- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
If $n(A)=30, n(B) = 45, n(A \cup B) = 65$ then find $n(A \cap B)$, $n(A-B)$ and $n(B-A)$.
Given :
The given terms are $n(A)=30, n(B) = 45, n(A \cup B) = 65$.
To do :
We have to find $n(A \cap B)$, $n(A-B)$ and $n(B-A)$.
Solution :
$ n(A \cup B) = n(A) + n(B) - n(A \cap B) $
$65 = 30 + 45- n(A \cap B) $
$65 = 75 - n(A \cap B) $
$ n(A \cap B) = 75-65$
$ n(A \cap B) =10$
$n(A-B) = n(A) - n(A \cap B)$
$n(A-B) = 30 -10 = 20$
$n(A-B) =20$
$n(B-A) = n(B) - n(A \cap B)$
$n(B-A) = 45 - 10=35$
$n(B-A) = 35$
Therefore, $ n(A \cap B) =10$, $n(A-B) =20$ and $n(B-A) = 35$.
- Related Articles
- Construct a Turing Machine for L = {a^n b^n | n>=1}
- Identify A and B"\n
- Construct Deterministic PDA for a^n b^n where n>=1
- Find value of a and b."\n
- Convert the following LEX program into Lexical Analyzer.\nAUXILIARY DEFINITIONS\n −\n −\n −\nTRANSLATION RULES\n a{ }\n abb{ }\n a*b+
- If \( a=x^{m+n} y^{l}, b=x^{n+l} y^{m} \) and \( c=x^{l+m} y^{n} \), prove that \( a^{m-n} b^{n-1} c^{l-m}=1 . \)
- Find the resistance between A and B."\n
- Check if a string follows a^n b^n pattern or not in Python
- Program to find greater value between a^n and b^n in C++
- If A = { a, e, i, o, u } B={ a, b, c, d }, then find $A \cup B$ and $A \cap B $
- Count pairs (a, b) whose sum of cubes is N (a^3 + b^3 = N) in C++
- Count pairs (a, b) whose sum of squares is N (a^2 + b^2 = N) in C++
- If a = -9 and b = -6, show that (eaa-b)? eq"\n
- If \( a \cos \theta+b \sin \theta=m \) and \( a \sin \theta-b \cos \theta=n \), prove that \( a^{2}+b^{2}=m^{2}+n^{2} \)
- Show that:\( \frac{\left(a+\frac{1}{b}\right)^{m} \times\left(a-\frac{1}{b}\right)^{n}}{\left(b+\frac{1}{a}\right)^{m} \times\left(b-\frac{1}{a}\right)^{n}}=\left(\frac{a}{b}\right)^{m+n} \)

Advertisements