- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
If $ a \cos \theta+b \sin \theta=m $ and $ a \sin \theta-b \cos \theta=n $, prove that $ a^{2}+b^{2}=m^{2}+n^{2} $
Given:
\( a \cos \theta+b \sin \theta=m \) and \( a \sin \theta-b \cos \theta=n \)
To do:
We have to prove that \( a^{2}+b^{2}=m^{2}+n^{2} \).
Solution:
We know that,
$\sin^2 A+\cos^2 A=1$
$\operatorname{cosec}^2 A-\cot^2 A=1$
$\sec^2 A-\tan^2 A=1$
$\cot A=\frac{\cos A}{\sin A}$
$\tan A=\frac{\sin A}{\cos A}$
$\operatorname{cosec} A=\frac{1}{\sin A}$
$\sec A=\frac{1}{\cos A}$
Therefore,
$a \cos \theta+b \sin \theta=m$
$a \sin \theta-b \cos \theta=n$
Let us consider RHS,
$m^{2}+n^{2}=(a \cos \theta+b \sin \theta)^{2}+(a \sin \theta-b \cos \theta)^{2}$
$=a^{2} \cos ^{2} \theta+b^{2} \sin ^{2} \theta+2 a b \sin \theta \cos \theta+a^{2} \sin ^{2} \theta+b^{2} \cos ^{2} \theta-2 a b \sin \theta \cos \theta$
$=a^{2} (\sin ^{2} \theta+ \cos ^{2} \theta)+b^{2} (\sin ^{2} \theta+\cos ^{2} \theta)$
$=a^{2} (1)+b^{2} (1)$
$=a^{2}+b^{2}$
$=$ LHS
Hence proved.
- Related Articles
- If \( a \cos ^{3} \theta+3 a \cos \theta \sin ^{2} \theta=m, a \sin ^{3} \theta+3 a \cos ^{2} \theta \sin \theta=n \), prove that \( (m+n)^{2 / 3}+(m-n)^{2 / 3}=2 a^{2 / 3} \)
- If \( tan \theta = \frac{a}{b} \), prove that\( \frac{a \sin \theta-b \cos \theta}{a \sin \theta+b \cos \theta}=\frac{a^{2}-b^{2}}{a^{2}+b^{2}} \).
- If \( \sin \theta+2 \cos \theta=1 \) prove that \( 2 \sin \theta-\cos \theta=2 . \)
- If \( \cos \theta+\cos ^{2} \theta=1 \), prove that\( \sin ^{12} \theta+3 \sin ^{10} \theta+3 \sin ^{8} \theta+\sin ^{6} \theta+2 \sin ^{4} \theta+2 \sin ^{2} \theta-2=1 \)
- Prove that: $\frac{sin \theta-2 sin ^{3} \theta}{2 cos ^{3} \theta-cos \theta}= tan \theta$
- Prove: $\sin ^{6} \theta+\cos ^{6} \theta=1-3 \sin ^{2} \theta \cos ^{2} \theta$.
- Prove the following identities:\( \left(\frac{1}{\sec ^{2} \theta-\cos ^{2} \theta}+\frac{1}{\operatorname{cosec}^{2} \theta-\sin ^{2} \theta}\right) \sin ^{2} \theta \cos ^{2} \theta=\frac{1-\sin ^{2} \theta \cos ^{2} \theta}{2+\sin ^{2} \theta \cos ^{2} \theta} \)
- Prove that:\( \frac{1+\cos \theta-\sin ^{2} \theta}{\sin \theta(1+\cos \theta)}=\cot \theta \)
- If \( \operatorname{cosec} \theta-\sin \theta=a^{3}, \sec \theta-\cos \theta=b^{3} \), prove that \( a^{2} b^{2}\left(a^{2}+b^{2}\right)=1 \)
- If $sin\theta+sin^{2}\theta=1$, then evaluate $cos^{2}\theta+cos^{4}\theta$.
- If $\frac{x}{a}cos\theta+\frac{y}{b}sin\theta=1$ and $\frac{x}{a}sin\theta-\frac{y}{b}cos\theta=1$, prove that $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=2$.
- If \( 3 \cos \theta-4 \sin \theta=2 \cos \theta+\sin \theta \), find \( \tan \theta \).
- Prove that : $( sin \theta+ cosec \theta)^{2}+( cos \theta+sec \theta)^{2} =7+ tan^{2} \theta+ cot^{2} \theta$.
- Prove the following trigonometric identities:\( (\sec \theta+\cos \theta)(\sec \theta-\cos \theta)=\tan ^{2} \theta+\sin ^{2} \theta \)
- If \( \tan \theta=\frac{12}{13} \), find the value of \( \frac{2 \sin \theta \cos \theta}{\cos ^{2} \theta-\sin ^{2} \theta} \)
