- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
If $ a=x^{m+n} y^{l}, b=x^{n+l} y^{m} $ and $ c=x^{l+m} y^{n} $, prove that $ a^{m-n} b^{n-1} c^{l-m}=1 . $
Given:
\( a=x^{m+n} y^{l}, b=x^{n+l} y^{m} \) and \( c=x^{l+m} y^{n} \)
To do:
We have to prove that \( a^{m-n} b^{n-1} c^{l-m}=1 . \)
Solution:
We know that,
$(a^{m})^{n}=a^{m n}$
$a^{m} \times a^{n}=a^{m+n}$
$a^{m} \div a^{n}=a^{m-n}$
$a^{0}=1$
Therefore,
LHS $=a^{m-n} b^{n-l} c^{l-m}$
$=(x^{m+n} y^l)^{m-n} (x^{n+l} y^m)^{n-l} (x^{l+m} y^n)^{l-m}$
$=x^{(m+n)(m-n)} y^{l(m-n)} \times x^{(n+l)(n-l)} y^{m(n-l)} \times x^{(l+m)(l-m)} y^{n(l-m)}$
$=x^{m^2-n^2} y^{lm-ln} x^{n^2-l^2} y^{mn-ml} x^{l^2-m^2} y^{nl-nm}$
$=x^{m^2-n^2+n^2-l^2+l^2-m^2} y^{lm-ln+mn-ml+nl-mn}$
$=x^0 \times y^0$
$=1\times1$
$=1$
$=$ RHS
Hence proved.
- Related Articles
- If \( x=a^{m+n}, y=a^{n+1} \) and \( z=a^{l+m} \), prove that \( x^{m} y^{n} z^{l}=x^{n} y^{l} z^{m} \)
- Simplify:\( \sqrt[lm]{\frac{x^{l}}{x^{m}}} \times \sqrt[m n]{\frac{x^{m}}{x^{n}}} \times \sqrt[n l]{\frac{x^{n}}{x^{l}}} \)
- If $l, m, n$ are three lines such that $l \parallel m$ and $n \perp l$, prove that $n \perp m$.
- Find the numerical value of \( P: Q \) where \( \mathrm{P}=\left(\frac{x^{m}}{x^{n}}\right)^{m+n-l} \times\left(\frac{x^{n}}{x^{l}}\right)^{n+l-m} \times\left(\frac{x^{l}}{x^{m}}\right)^{l+m-n} \) and\( \mathrm{Q}=\left(x^{1 /(a-b)}\right)^{1 /(a-c)} \times\left(x^{1 /(b-c)}\right)^{1 /(b-a)} \times\left(x^{1 /(c-a)}\right)^{1 /(c-b)} \)where \( a, b, c \) being all different.A. \( 1: 2 \)B. \( 2: 1 \)C. \( 1: 1 \)D. None of these
- Construct PDA for L = {0n1m2(n+m) | m,n >=1}
- Construct Turing machine for L = {an bm a(n+m) - n,m≥1} in C++
- Find the value of x, if $l \parallel m$. "\n
- In the figure, \(P A \) and \( P B \) are tangents from an external point \( P \) to a circle with centre \( O \). \( L N \) touches the circle at \( M \). Prove that \( P L+L M=P N+M N \)."\n
- Construct Pushdown automata for L = {0n1m2(n+m) | m,n = 0} in C++
- Obtain the condition for the following system of linear equations to have a unique solution$a x+b y=c$$l x+m y=n$
- Add the following monomials:(i) \( 8 x y, 2 x y, 9 x y \)\( \left(iv{}\right)-40 m n,-30 m n, 18 m n \)
- Construct Pushdown automata for L = {0(n+m)1m2n | m, n = 0} in C++
- Construct Pushdown automata for L = {0m1(n+m)2n | m,n = 0} in C++
- Add the following:$l^{2}+m^{2}, m^{2}+n^{2}, n^{2}+l^{2}, 2lm+2mn+2nl$
- Construct Pushdown automata for L = {a(2*m)c(4*n)dnbm | m,n = 0} in C++

Advertisements