- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
If $sin\theta+sin^{2}\theta=1$, then evaluate $cos^{2}\theta+cos^{4}\theta$.
Given: $sin\theta+sin^{2}\theta=1$.
To do: To evaluate $cos^{2}\theta+cos^{4}\theta$.
Solution:
As given $sin\theta+sin^{2}\theta=1$
$\Rightarrow sin\theta+1-cos^{2}\theta=1$ [$\because sin^{2}\theta+cos^{2}\theta=1$]
$\Rightarrow sin\theta-cos^{2}\theta=0$
$\Rightarrow sin\theta=cos^{2}\theta$
Now on substituting $sin\theta=cos^{2}\theta$ in $cos^{2}\theta+cos^{4}\theta$
$\Rightarrow cos^{2}\theta+cos^{4}\theta=sin\theta+sin^{2}\theta=1$ [Given $sin\theta+sin^{2}\theta=1$]
$\therefore cos^{2}\theta+cos^{4}\theta=1$
Advertisements