- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
If $ \cos \theta+\cos ^{2} \theta=1 $, prove that$ \sin ^{12} \theta+3 \sin ^{10} \theta+3 \sin ^{8} \theta+\sin ^{6} \theta+2 \sin ^{4} \theta+2 \sin ^{2} \theta-2=1 $
Given:
\( \cos \theta+\cos ^{2} \theta=1 \)
To do:
We have to prove that \( \sin ^{12} \theta+3 \sin ^{10} \theta+3 \sin ^{8} \theta+\sin ^{6} \theta+2 \sin ^{4} \theta+2 \sin ^{2} \theta-2=1 \).
Solution:
We know that,
$\sin^2 A+\cos^2 A=1$
$\operatorname{cosec}^2 A-\cot^2 A=1$
$\sec^2 A-\tan^2 A=1$
$\cot A=\frac{\cos A}{\sin A}$
$\tan A=\frac{\sin A}{\cos A}$
$\operatorname{cosec} A=\frac{1}{\sin A}$
$\sec A=\frac{1}{\cos A}$
Therefore,
$\cos \theta+\cos ^{2} \theta=1$
$\Rightarrow \cos \theta=1-\cos ^{2} \theta$
$\Rightarrow \cos \theta=\sin ^{2} \theta$
$\Rightarrow \cos^2 \theta=\sin ^{4} \theta$
This implies,
$\sin ^{12} \theta+3 \sin ^{10} \theta+3 \sin ^{8} \theta+\sin ^{6} \theta +2 \sin ^{4} \theta+2 \sin ^{2} \theta-2 =(\sin ^{12} \theta+3 \sin ^{10} \theta+3 \sin ^{8} \theta+\sin ^{6} \theta)+2(\sin ^{4} \theta+\sin ^{2} \theta-1)$
$=(\sin ^{4} \theta+\sin ^{2} \theta)^{3}+2(\sin ^{4} \theta+\sin ^{2} \theta-1)$ [Since $(a+b)^{3}=a^{3}+3 a^{2} b+3 a b^{2}+b^{3}$]
$=(\cos ^{2} \theta+\sin ^{2} \theta)^{3}+2(\cos ^{2} \theta+\sin ^{2} \theta-1)$
$=(1)^{3}+2(1-1)$
$=1+2 \times 0$
$=1+0$
$=1$
Hence proved.