- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
If $ \sin \theta+2 \cos \theta=1 $ prove that $ 2 \sin \theta-\cos \theta=2 . $
Given:
\( \sin \theta+2 \cos \theta=1 \)
To do:
We have to prove that \( 2 \sin \theta-\cos \theta=2 . \)
Solution:
$ \sin \theta+2 \cos \theta=1 $
Squaring on both sides, we get,
$(\sin \theta+2 \cos \theta)^{2}=1$
$\Rightarrow \sin ^{2} \theta+4 \cos ^{2} \theta+4 \sin \theta \cos \theta=1$
$\Rightarrow (1-\cos ^{2} \theta)+4(1-\sin ^{2} \theta)+4 \sin \theta \cos \theta=1$ [Since $\sin ^{2} \theta+\cos ^{2} \theta=1$]
$\Rightarrow -\cos ^{2} \theta-4 \sin ^{2} \theta+4 \sin \theta \cos \theta=-4 $
$\Rightarrow 4 \sin ^{2} \theta+\cos ^{2} \theta-4 \sin \theta \cos \theta=4$
$\Rightarrow (2 \sin \theta-\cos \theta)^{2}=4$ [Since $a^{2}+b^{2}-2 ab=(a-b)^{2}$]
$\Rightarrow 2 \sin \theta-\cos \theta=2$
Hence proved.
Advertisements