- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Prove: $\sin ^{6} \theta+\cos ^{6} \theta=1-3 \sin ^{2} \theta \cos ^{2} \theta$.
Given: $\sin ^{6} \theta+\cos ^{6} \theta=1-3 \sin ^{2} \theta \cos ^{2} \theta$.
To do: To prove that $L.H.S.=R.H.S.$
Solution:
$L.H.S.=sin^6\theta+cos^6\theta$
$=(sin^2\theta)^3+(cos^2\theta)^3$
Let $sin^2\theta=a$ and $cos^2\theta=b$
$\therefore L.H.S.=a^3+b^3$
$=( a+b)^3-3ab( a+b)$
$=(sin^2\theta-cos^2\theta)^3-3sin^2\theta cos^2\theta(sin^2\theta+cos^2\theta)$
$=( 1)^3-3sin^2\theta cos^2\theta$ $[\because sin^2\theta+cos^2\theta=1]$
$=1-3sin^2\theta cos^2\theta$
$=R.H.S.$
Advertisements