- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
If $2x + 3y = 13$ and $xy = 6$, find the value of $8x^3 + 21y^3$.
Given:
$2x + 3y = 13$ and $xy = 6$
To do:
We have to find the value of $8x^3 + 21y^3$.
Solution:
We know that,
$(a+b)^3=a^3 + b^3 + 3ab(a+b)$
Therefore,
$2x + 3y = 13$
Cubing both sides, we get,
$(2x + 3y)^3 = (13)^3$
$(2x)^3 + (3y)^3 + 3 \times 2x \times 3y(2x + 3y) = 2197$
$8x^3 + 27y^3 + 18xy(2x + 3y) = 2197$
$8x^3 + 27y^3 + 18 \times 6 \times 13 = 2197$
$8x^3 + 27y^3 + 1404 = 2197$
$8x^3 + 27y^3 = 2197 - 1404$
$8x^3 + 27y^3 = 793$
The value of \( 8x^{3}+27y^3 \) is $793$.
Advertisements