- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Find the value of $27x^3 + 8y^3$ if $3x + 2y = 14$ and $xy = 8$.
Given:
$3x + 2y = 14$ and $xy = 8$
To do:
We have to find the value of $27x^3 + 8y^3$.
Solution:
$3 x+2 y=14$
Cubing both sides, we get,
$(3 x+2 y)^{3}=(14)^{3}$
$(3 x)^{3}+(2 y)^{3}+3 \times 3 x \times 2 y(3 x+2 y)=2744$
$27 x^{3}+8 y^{3}+18 x y(3 x+2 y)=2744$
$27 x^{3}+8 y^{3}+18 \times 8 \times 14=2744$
$27 x^{3}+8 y^{3}+2016=2744$
$27 x^{3}+8 y^{3}=2744-2016$
$27 x^{3}+8 y^{3}=728$
The value of $27 x^{3}+8 y^{3}$ is $728$.
Advertisements