If $x+y=5$ and $xy=6$ then find $x^3+y^3$.
Given :
$x+y = 5$ and $xy = 6$.
To do :
We have to find the value of $x^3+y^3$.
Solution :
We know that,
$x^3+y^3 = (x+y)(x^2-xy+y^2)$
$x^2+y^2=(x+y)^2-2xy$
$x^2+y^2=(5)^2-2(6)=25-12=13$
$x^3+y^3 = (x+y)(x^2+y^2 -xy) = (5)(13-6)$
$= 5 \times 7= 35$
Therefore, the value of $x^3+y^3$ is 35.
x^2+y^2=(x+y)^2-2xy
- Related Articles
- If $x+y=19$ and $x-y=7$, then $xy=?$
- Factorize:\( x^{3}-2 x^{2} y+3 x y^{2}-6 y^{3} \)
- Find the following products:$xy (x^3-y^3)$
- If $x + y + z = 8$ and $xy + yz+ zx = 20$, find the value of $x^3 + y^3 + z^3 – 3xyz$.
- Simplify: $2(x^2 - y^2 +xy) -3(x^2 +y^2 -xy)$.
- Add the following algebraic expressions.a) \( x+5 \) and \( x+3 \)b) \( 3 x+4 \) and \( 4 x+9 \)c) \( 5 y-2 \) and \( 2 y+7 \) d) \( 8 y-3 \) and \( 5 y-6 \)
- If X = {1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9} and Y = {3 , 6 , 9 , 12 , 15 , 18} , find $(X - Y)$ and $(Y -X)$ and illustrate them in Venn diagram.
- If \( x+y+z=0 \), show that \( x^{3}+y^{3}+z^{3}=3 x y z \).
- Factorize:\( x\left(x^{3}-y^{3}\right)+3 x y(x-y) \)
- Simplify: $\frac{x^{-3}-y^{-3}}{x^{-3} y^{-1}+(x y)^{-2}+y^{-1} x^{-3}}$.
- Solve the following system of equations:$\frac{xy}{x+y} =\frac{6}{5}$$\frac{xy}{y-x}=6$
- Verify : (i) \( x^{3}+y^{3}=(x+y)\left(x^{2}-x y+y^{2}\right) \)(ii) \( x^{3}-y^{3}=(x-y)\left(x^{2}+x y+y^{2}\right) \)
- If \( 3^{x}=5^{y}=(75)^{z} \), show that \( z=\frac{x y}{2 x+y} \).
- If $2x+y=12, xy=10$ then find the value of $8x^3 +y^3$
- \Find $(x +y) \div (x - y)$. if,(i) \( x=\frac{2}{3}, y=\frac{3}{2} \)(ii) \( x=\frac{2}{5}, y=\frac{1}{2} \)(iii) \( x=\frac{5}{4}, y=\frac{-1}{3} \)(iv) \( x=\frac{2}{7}, y=\frac{4}{3} \)(v) \( x=\frac{1}{4}, y=\frac{3}{2} \)
Kickstart Your Career
Get certified by completing the course
Get Started