- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
If $3x – 2y= 11$ and $xy = 12$, find the value of $27x^3 – 8y^3$.
Given:
$3x – 2y= 11$ and $xy = 12$
To do:
We have to find the value of $27x^3 - 8y^3$.
Solution:
We know that,
$(a-b)^3=a^3 - b^3 - 3ab(a-b)$
Therefore,
$3x - 2y = 11$
Cubing both sides, we get,
$(3x – 2y)^3 = (11)^3$
$(3x)^3 – (2y)^3 – 3 \times 3x \times 2y(3x – 2y) =1331$
$27x^3 – 8y^3 – 18xy(3x -2y) =1331$
$27x^3 – 8y^3 – 18 \times 12 \times 11 = 1331$
$27x^3 – 8y^3 – 2376 = 1331$
$27x^3 – 8y^3 = 1331 + 2376$
$27x^3 – 8y^3 = 3707$
The value of \( 27x^{3}-8y^3 \) is $3707$.   
Advertisements