- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Factorise $(2x-3y)^3+(3y-4z)^3+(4z-2x)^3$
Given: $(2x-3y)^3+(3y-4z)^3+(4z-2x)^3$.
To find: We have to factorize the given expression.
Solution:
$(2x-3y)^3+(3y-4z)^3+(4z-2x)^3$
Using the formula $a^3 + b^3 + c^3 = 3abc$ if $a+b+c = 0$
let $a =2x-3y; b = 3y - 4z; c = 4z - 2x$
$a + b + c = 2x -3y + 3y - 4z + 4z - 2x = 0$
$a^3 + b^3 + c^3 = 3abc$
So $(2x-3y)^3+(3y-4z)^3+(4z-2x)^3 = 3(2x-3y) (3y-4z)(4z-2x)$
So $(2x-3y)^3+(3y-4z)^3+(4z-2x)^3$ has been factorized as shown above.
Advertisements