Find the value of y if $6y - 3 = 3y + 9$.
Given :
$6y-3=3y+9$
To find :
We have to find the value of y.
Solution :
$6y-3=3y+9$
$6y-3y=9+3$
$3y=12$
$y=\frac{12}{3}$
$y=4$
The value of y is 4.
- Related Articles
- If the value of y =1 then find the value of $2y^3 + 3y^2 + y - 3$.
- If $2x + 3y = 13$ and $xy = 6$, find the value of $8x^3 + 21y^3$.
- If $2x+y=12, xy=10$ then find the value of $8x^3 +y^3$
- Find the value of $x$ if $(3^{x+2}-9)\div 8 = 9$
- If $2x+3y=6$ and $4x-5y=1$, then find the value of $( x^y)$.
- On comparing the ratios and find out whether the following pair of linear equations are consistent, or inconsistent.(i) $3x + 2y = 5; 2x – 3y = 7$(ii) $2x – 3y = 8; 4x – 6y = 9$(iii) $\frac{3}{2}x + \frac{5}{3}y = 7; 9x – 10y = 14$(iv) $5x-3y = 11; -10x + 6y = -22$(v) $\frac{4x}{3} + 2y = 8; 2x + 3y = 12$.
- If $x – y = 7$ and $xy = 9$, find the value of $x^2+y^2$.
- If $2x+3y=11$ and $xy=3$, find the value of $4x^2+9y^2$.
- Find the product of $-3y (xy +y^2)$ and find its value for $x = 4$, and $y = 5$.
- Find the value of $y$ if \( 1.6=\frac{y}{1.5} \).
- Find the value of$3 x^{2}-2 y^{2}$if x=-2 and y=2
- On comparing the ratios and find out whether the lines representing the following pairs of linear equations intersect at a point, are parallel or coincident:(i) $5x – 4y + 8 = 7x + 6y – 9 = 0$(ii) $9x + 3y + 12 = 0, 18x + 6y + 24 = 0$(iii) $6 – 3y + 10 = 0, 2x – y + 9 = 0$
- If $x + y + z = 8$ and $xy + yz+ zx = 20$, find the value of $x^3 + y^3 + z^3 – 3xyz$.
- Find the value of $x^3 + y^3 - 12xy + 64$, when $x + y = -4$.
- Find the value of a, if 3, 9 and a are in continuous proportion.
Kickstart Your Career
Get certified by completing the course
Get Started