- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
If $2x + 3y = 14$ and $2x - 3y = 2$, find value of $xy$. [Hint: Use $(2x+3y)^2 - (2x-3y)^2 = 24xy$]
Given:
$2x + 3y = 14$ and $2x - 3y = 2$
To do:
We have to find the value of $xy$.
Solution:
The given expressions are $2x + 3y = 14$ and $2x - 3y = 2$. Here, we have to find the value of $xy$. So, by squaring and subtracting using the identities $(a+b)^2=a^2+2ab+b^2$ and $(a-b)^2=a^2-2ab+b^2$, we can find the required value.
$(a+b)^2=a^2+2ab+b^2$.............(I)
$(a-b)^2=a^2-2ab+b^2$.............(II)
Let us consider,
$2x + 3y = 14$
Squaring on both sides, we get,
$(2x + 3y)^2 = (14)^2$
$(2x)^2+2(2x)(3y)+(3y)^2=196$ [Using (I)]
$4x^2+12xy+9y^2=196$..........(III)
Now,
$2x - 3y = 2$
Squaring on both sides, we get,
$(2x - 3y)^2 = (2)^2$
$(2x)^2-2(2x)(3y)+(3y)^2=4$ [Using (II)]
$4x^2-12xy+9y^2=4$..........(IV)
Subtracting (IV) from (III), we get,
$(4x^2+12xy+9y^2)-(4x^2-12xy+9y^2)=196-4$
$4x^2-4x^2+12xy+12xy+9y^2-9y^2=192$
$24xy=192$
$xy=\frac{192}{24}$
$xy=8$
Hence, the value of $xy$ is $8$.
- Related Articles
- If $2x + 3y = 8$ and $xy = 2$, find the value of $4x^2 + 9y^2$.
- Factorize 3xy - 2 - 2x + 3y
- Factorize : $3xy+2+3y+2x$
- If $2x+3y=11$ and $xy=3$, find the value of $4x^2+9y^2$.
- Factorise $(2x-3y)^3+(3y-4z)^3+(4z-2x)^3$
- Is $4^2x+2^3y$ a polynomial?
- Simplify: $2x-[3y-{2x-(y-x)}]$.
- Multiply:$(3x^2 +y^2)$ by $(2x^2 + 3y^2)$
- Simplify:$(3x + 2y) (4x + 3y) - (2x - y) (7x - 3y)$
- Factorize each of the following expressions:$(2x - 3y)^3 + (4z - 2x)^3 + (3y - 4z)^3$
- What is the degree of the polynomial $2x^3y^2$?
- f $x=1,\ y=2$ and $z=5$, find the value of $2x^{2}-3y^{2}+z^{2}$.
- If $2x + 3y = 13$ and $xy = 6$, find the value of $8x^3 + 21y^3$.
- Factorize the expression $2x^3y^2 - 4x^2y^3 + 8xy^4$.
- Solve the following pair of linear equations graphically:$x+3y=6;\ 2x-3y=12$
