- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Find the values of $ a $ and $ b $, if 2 and 3 are zeroes of $x^3+ax^2+bx-30$.
Given :
The given polynomial is $x^3+ax^2+bx-30$.
2 and 3 are zeroes of $x^3+ax^2+bx-30$.
To do :
We have to find the values of a and b.
Solution :
2 and 3 are zeroes of $x^3+ax^2+bx-30$.
At $x = 2$,
$g(2) = (2)^3 + a(2)^2 + b(2) - 30 = 0$.
$8+4a + 2b - 30 = 0$
$4a + 2b = 22$
$2(2a+b)=2(11)$
$2a+b=11$-----(i)
At $x =3$,
$g(3) =(3)^3 + a(3)^2 + b(3) - 30 = 0$
$27+9a + 3b - 30 = 0$
$9a + 3b = 3$
$3(3a+b)=3$
$3a+b=1$----(ii)
Subtracting (i) from (ii), we get,
$(3a+b)-(2a+b) = 1-11$
$3a-2a = -10$
$a=-10$
Substitute $a = -10$ in equation (i)
$2(-10)+b = 11$
$-20+b =11$
$b = 11+20$
$b = 31$.
The value of $a$ is $-10$ and $b$ is $31$.
- Related Articles
- If $x^3 + ax^2 - bx + 10$ is divisible by $x^2 - 3x + 2$, find the values of $a$ and $b$.
- Find the values of $a$ and $b$, if $x^2 - 4$ is a factor of $ax^4 + 2x^3 - 3x^2 + bx - 4$.
- If $x=\frac{2}{3}$ and $x=-3$ are the roots of the equation $ax^2+7x+b=0$, find the values of $a$ and $b$.
- If both $x + 1$ and $x - 1$ are factors of $ax^3 + x^2 - 2x + b$, find the values of $a$ and $b$.
- For which values of \( a \) and \( b \), are the zeroes of \( q(x)=x^{3}+2 x^{2}+a \) also the zeroes of the polynomial \( p(x)=x^{5}-x^{4}-4 x^{3}+3 x^{2}+3 x+b \) ? Which zeroes of \( p(x) \) are not the zeroes of \( q(x) \) ?
- If $\alpha$ and $\beta$ are the zeroes of the polynomial $ax^2+bx+c$, find the value of $\alpha^2+\beta^2$.
- If $ax+by=a^{2}-b^{2}$ and $bx+ay=0$, then find the value of $( x+y)$.
- If the zeroes of the quadratic polynomial $x^2+( a+1)x+b$ are $2$ and $-3$, then $a=?,\ b=?$.
- If $2x + 3$ and $x + 2$ are the factors of the polynomial $g(x) = 2x^3 + ax^2 + 27x + b$, then find the values of the constants a and b in the polynomial g(x).
- If $\sqrt{3}$ and $-\sqrt{3}$ are the zeroes of $( x^{4}+x^{3}-23 x^{2}=3 x+60)$, find the all zeroes of given polynomial.
- If \( x-\sqrt{3} \) is a factor of the polynomial \( a x^{2}+b x-3 \) and \( a+b=2-\sqrt{3} \). Find the values of \( a \) and \( b \).
- If the zeroes of the polynomial $x^3 - 3x^2 + x + 1$ are $a-b, a, a + b$, find $a$ and $b$.
- Find the values of $a$ and $b$ so that $(x + 1)$ and $(x - 1)$ are factors of $x^4 + ax^3 - 3x^2 + 2x + b$.
- Find the condition that zeroes of polynomial $p( x)=ax^2+bx+c$ are reciprocal of each other.
- If \( x+1 \) is a factor of \( 2 x^{3}+a x^{2}+2 b x+1 \), then find the values of \( a \) and \( b \) given that \( 2 a-3 b=4 \).

Advertisements