- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
If $ x-\sqrt{3} $ is a factor of the polynomial $ a x^{2}+b x-3 $ and $ a+b=2-\sqrt{3} $. Find the values of $ a $ and $ b $.
Given:
\( x-\sqrt{3} \) is a factor of the polynomial \( a x^{2}+b x-3 \) and \( a+b=2-\sqrt{3} \).
To do:
We have to find the values of \( a \) and \( b \).
Solution:
$a+b=2-\sqrt{3}$.............(i)
\( x-\sqrt{3} \) is a factor of the polynomial \( p(x) = a x^{2}+b x-3 \)
This implies,
$p(\sqrt3)=a(\sqrt3)^2+b(\sqrt3)-3=0$
$3a+\sqrt3b-3=0$
$3a+\sqrt3b=3$
$\sqrt3(\sqrt3a+b)=(\sqrt3)^2$
$\sqrt3a+b=\sqrt3$.........(ii)
Subtracting (ii) from (i), we get,
$a+b-\sqrt3a-b=2-\sqrt3-\sqrt3$
$a-\sqrt3a=2-2\sqrt3$
$a(1-\sqrt3)=2(1-\sqrt3)$
$a=2$
This implies,
$2+b=2-\sqrt3$
$b=-\sqrt3$
- Related Articles
- Which of the following is not a polynomial?(a) $x^{2}+\sqrt{2} x+3$ (b) $x^{3}+3 x^{2}-3$ (c) $6 x+4$ d) $x^{2}-\sqrt{2 x}+6$
- If \( x+1 \) is a factor of \( 2 x^{3}+a x^{2}+2 b x+1 \), then find the values of \( a \) and \( b \) given that \( 2 a-3 b=4 \).
- $( x-2)$ is a common factor of $x^{3}-4 x^{2}+a x+b$ and $x^{3}-a x^{2}+b x+8$, then the values of $a$ and $b$ are respectively.
- Given that \( x-\sqrt{5} \) is a factor of the cubic polynomial \( x^{3}-3 \sqrt{5} x^{2}+13 x-3 \sqrt{5} \), find all the zeroes of the polynomial.
- Which one of the following is a polynomial?(A) $\frac{x^{2}}{2}-\frac{2}{x^{2}}$(B) $\sqrt{2 x}-1$(C) $ x^{2}+\frac{3 x^{\frac{3}{2}}}{\sqrt{x}}$
- Given that $x\ -\ \sqrt{5}$& is a factor of the cubic polynomial $x^3\ -\ 3\sqrt{5}x^2\ +\ 13x\ -\ 3\sqrt{5}$, find all the zeroes of the polynomial.
- If \( 2 x+3 \) and \( x+2 \) are the factors of the polynomial \( g(x)=2 x^{3}+a x^{2}+27 x+b \), find the value of the constants $a$ and $b$.
- Find the value of $a \times b$ if \( \frac{3+2 \sqrt{3}}{3-2 \sqrt{3}}=a+b \sqrt{3} \).
- Given that is $x-\sqrt{5}$ a factor of the polynomial $x^{3} -3\sqrt{5} x^{2} -5x+15\sqrt{5}$ , find all the zeroes of the polynomials.
- If $\sqrt{3}$ and $-\sqrt{3}$ are the zeroes of $( x^{4}+x^{3}-23 x^{2}=3 x+60)$, find the all zeroes of given polynomial.
- If $\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}=x,\ \frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}=y$, find the value $x^{2}+y^{2}+x y$.
- If the zeroes of the polynomial $x^3 - 3x^2 + x + 1$ are $a-b, a, a + b$, find $a$ and $b$.
- If \( x=\sqrt{2}+\sqrt{3}+\sqrt{6} \) is root of \( x^{4}+a x^{3}+b x^{2}+c x+d=0 \) where $a, b, c, d$ are integers, what is the value of |$a+b+c+d$|?A. 52B. 90C. 21D.93
- Find the zeroes of polynomial: $q( x)=\sqrt{3}x^2+10x+7\sqrt{3}$.
- If the zeroes of the quadratic polynomial $x^2+( a+1)x+b$ are $2$ and $-3$, then $a=?,\ b=?$.

Advertisements