- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
For which values of $ a $ and $ b $, are the zeroes of $ q(x)=x^{3}+2 x^{2}+a $ also the zeroes of the polynomial $ p(x)=x^{5}-x^{4}-4 x^{3}+3 x^{2}+3 x+b $ ? Which zeroes of $ p(x) $ are not the zeroes of $ q(x) $ ?
Given:
\( q(x)=x^{3}+2 x^{2}+a \)
\( p(x)=x^{5}-x^{4}-4 x^{3}+3 x^{2}+3 x+b \)
To find:
Here, we have to find the values of \( a \) and \( b \) such that the zeroes of \( q(x) \) are also the zeroes of the polynomial \( p(x) \).
Solution:
The zeroes of $q(x) = x^3 + 2x^2 + a$ are also the zeroes of the polynomial $p(x) = x^5 - x^4 - 4x^3 + 3x^2 + 3x + b$.
This implies,
$q(x)$ is a factor of $p(x)$.
By using long division method, we get,
$x^3+2x^2+a$)$x^5 - x^4 - 4x^3 + 3x^2 + 3x + b$($x^2-3x+2$
$x^5+2x^4+ax^2$
------------------------
$-3x^4-4x^3+(3-a)x^2+3x+b$
$-3x^4-6x^3-3ax$
----------------------
$2x^3+(3-a)x^2+(3+3a)x+b$
$2x^3+4x^2+2a$
--------------------
$-(1+a)x^2+(3+3a)x+(b-2a)$
If $(x^3 + 2x^2 + a)$ is a factor of $(x^5 - x^4 - 4x^3 + 3x^2 + 3x + b)$, then the remainder should be zero.
This implies,
$-(1 + a) x^2 + (3 + 3a) x + (b - 2a) = 0$
$= 0x^2 + 0x+0$
On comparing the coefficient of $x$, we get,
$3a + 3 = 0$
$3a = -3$
$a=-1$
$b - 2a = 0$
$b =2a$
$b = 2(-1)$
$= -2$
For $a = -1$ and $b = -2$, the zeroes of $q(x)$ are also the zeroes of the polynomial $p(x)$.
Therefore,
$q(x) = x^3 + 2x^2 -1$
$p(x) = x^5 - x^4 - 4x^3 + 3x^2 + 3x - 2$
Dividend $=$ Divisor $\times$ Quotient $+$ Remainder
$p(x) = (x^3 +2x^2 -1)(x^2 -3x + 2)+ 0$
$= (x^3 + 2x^2 -1)(x^2 -2x - x + 2)$
$= (x^3 + 2x^2 - 1) (x - 2) (x - 1)$
Hence, the zeroes of $p(x)$ are $l$ and $2$ which are not the zeroes of $q(x)$.