- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
If both $x + 1$ and $x - 1$ are factors of $ax^3 + x^2 - 2x + b$, find the values of $a$ and $b$.
Given:
Given expression is $ax^3 + x^2 - 2x + b$.
$(x + 1)$ and $(x - 1)$ are factors of $ax^3 + x^2 - 2x + b$.
To do:
We have to find the values of $a$ and $b$.
Solution:
We know that,
If $(x-m)$ is a root of $f(x)$ then $f(m)=0$.
Therefore,
$f(-1)=0$
$\Rightarrow a(-1)^3 + (-1)^2 - 2(-1) + b=0$
$\Rightarrow -a+1+2+b=0$
$\Rightarrow a=b+3$...............(i)
$f(1)=0$
$\Rightarrow a(1)^3 + (1)^2 - 2(1) + b=0$
$\Rightarrow a+1-2+b=0$
$\Rightarrow b+3-1+b=0$ [From (i)]
$\Rightarrow 2b=-2$
$\Rightarrow b=\frac{-2}{2}$
$\Rightarrow b=-1$
$\Rightarrow a=-1+3=2$
The values of $a$ and $b$ are $2$ and $-1$ respectively.
- Related Articles
- Find the values of $a$ and $b$ so that $(x + 1)$ and $(x - 1)$ are factors of $x^4 + ax^3 - 3x^2 + 2x + b$.
- If $x = 0$ and $x = -1$ are the roots of the polynomial $f(x) = 2x^3 - 3x^2 + ax + b$, find the value of $a$ and $b$.
- If $2x + 3$ and $x + 2$ are the factors of the polynomial $g(x) = 2x^3 + ax^2 + 27x + b$, then find the values of the constants a and b in the polynomial g(x).
- If \( x+1 \) is a factor of \( 2 x^{3}+a x^{2}+2 b x+1 \), then find the values of \( a \) and \( b \) given that \( 2 a-3 b=4 \).
- If $x=\frac{2}{3}$ and $x=-3$ are the roots of the equation $ax^2+7x+b=0$, find the values of $a$ and $b$.
- If $x + 1$ is a factor of $2x^3 + ax^2 + 2bx + 1$, then find the values of $a$ and $b$ given that $2a - 3b = 4$.
- If $x - \frac{1}{x} = 3$, find the values of $x^2 + \frac{1}{x^2}$ and $x^4 + \frac{1}{x^4}$.
- If \( 2 x+3 \) and \( x+2 \) are the factors of the polynomial \( g(x)=2 x^{3}+a x^{2}+27 x+b \), find the value of the constants $a$ and $b$.
- Find $\alpha$ and $\beta$, if $x + 1$ and $x + 2$ are factors of $x^3 + 3x^2 - 2 \alpha x + \beta$.
- Find the values of \( a \) and \( b \), if 2 and 3 are zeroes of $x^3+ax^2+bx-30$.
- If $x^{2}+\frac{1}{x^{2}}=18$, find the values of $x+\frac{1}{x}$ and $x-\frac{1}{x}$.
- If the zeroes of the polynomial $x^3 - 3x^2 + x + 1$ are $a-b, a, a + b$, find $a$ and $b$.
- If $x^3 + ax^2 - bx + 10$ is divisible by $x^2 - 3x + 2$, find the values of $a$ and $b$.
- If \( x^{2}+\frac{1}{x^{2}}=62 \), find the value of(a) \( x+\frac{1}{x} \)(b) \( x-\frac{1}{x} \)
- Simplify:(i) $2x^2 (x^3 - x) - 3x (x^4 + 2x) -2(x^4 - 3x^2)$(ii) $x^3y (x^2 - 2x) + 2xy (x^3 - x^4)$(iii) $3a^2 + 2 (a + 2) - 3a (2a + 1)$(iv) $x (x + 4) + 3x (2x^2 - 1) + 4x^2 + 4$(v) $a (b-c) - b (c - a) - c (a - b)$(vi) $a (b - c) + b (c - a) + c (a - b)$(vii) $4ab (a - b) - 6a^2 (b - b^2) -3b^2 (2a^2 - a) + 2ab (b-a)$(viii) $x^2 (x^2 + 1) - x^3 (x + 1) - x (x^3 - x)$(ix) $2a^2 + 3a (1 - 2a^3) + a (a + 1)$(x) $a^2 (2a - 1) + 3a + a^3 - 8$(xi) $\frac{3}{2}-x^2 (x^2 - 1) + \frac{1}{4}-x^2 (x^2 + x) - \frac{3}{4}x (x^3 - 1)$(xii) $a^2b (a - b^2) + ab^2 (4ab - 2a^2) - a^3b (1 - 2b)$(xiii) $a^2b (a^3 - a + 1) - ab (a^4 - 2a^2 + 2a) - b (a^3- a^2 -1)$.

Advertisements