If $ax+by=a^{2}-b^{2}$ and $bx+ay=0$, then find the value of $( x+y)$.
Given: $ax+by=a^{2}-b^{2}$ and $bx+ay=0$.
To do: To find the value of $( x+y)$.
Solution:
Given equations are $ax+by=a^{2}-b^{2}$ and $bx+ay=0$
On adding both equations,
$ax+by+bx+ay=a^{2}-b^{2}+0$
$\Rightarrow ax+ay+bx+by=a^{2}-b^{2}$
$\Rightarrow a( x+y)+b( x+y)=( a+b)( a-b)$
$\Rightarrow ( a+b)( x+y)=( a+b)( a-b)$
$\Rightarrow ( x+y)=( a-b)$
Thus, $x+y=a-b$.
- Related Articles
- Factorize the expression $(ax+by)^2+(bx-ay)^2$.
- Divide:
(i) $ax^2-ay^2$ by $ax+ay$
(ii) $x^4-y^4$ by $x^2-y^2$
- If $\alpha,\ \beta$ are the roots of the equation $ax^2+bx+c=0$, then find the roots of the equation $ax^2+bx(x+1)+c(x+1)^2=0$.
- Solve by elimination method:$ax+by=1$ and $bx+ay=\frac{(a+b)^2}{a^2+b^2}-1$.
- Solve the following system of equations by the method of cross-multiplication: $2(ax-by)+a+4b=0$ $2(bx+ay)+b-4a=0$
- If $x^3 + ax^2 - bx + 10$ is divisible by $x^2 - 3x + 2$, find the values of $a$ and $b$.
- If the roots of the equations $ax^2+2bx+c=0$ and $bx^2-2\sqrt{ac}x+b=0$ are simultaneously real, then prove that $b^2=ac$.
- Solve the following system of equations by the method of cross-multiplication: $ax\ +\ by\ =\ a^2$ $bx\ +\ ay\ =\ b^2$
- If $x+2$ is a factor of $x^2+ax+8$, then find the value of $a$.
- If $a, b, c$ are real numbers such that $ac≠0$, then show that at least one of the equations $ax^2+bx+c=0$ and $-ax^2+bx+c=0$ has real roots.
- Factorize the expression $ax+ay-bx-by$.
- Find the values of \( a \) and \( b \), if 2 and 3 are zeroes of $x^3+ax^2+bx-30$.
- If 1 is a root of the equations $ay^{2}+ay+3=0$ and $y^{2}+y+b=0$, then ab is equal to:$( A) \ 3$ $( B) -\frac{7}{2}$ $( C) \ 6$ $( D) -3$
- Solve for $x$ and $y$: $\frac{x}{a}=\frac{y}{b};\ ax+by=a^{2}+b^{2}$.
- Find the value of$3 x^{2}-2 y^{2}$if x=-2 and y=2
Kickstart Your Career
Get certified by completing the course
Get Started