- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
If $ x=2+\sqrt{3} $, find the value of $ x^{3}+\frac{1}{x^{3}} $.
Given:
\( x=2+\sqrt{3} \)
To do:
We have to find the value of \( x^{3}+\frac{1}{x^{3}} \).
Solution:
We know that,
Rationalising factor of a fraction with denominator ${\sqrt{a}}$ is ${\sqrt{a}}$.
Rationalising factor of a fraction with denominator ${\sqrt{a}-\sqrt{b}}$ is ${\sqrt{a}+\sqrt{b}}$.
Rationalising factor of a fraction with denominator ${\sqrt{a}+\sqrt{b}}$ is ${\sqrt{a}-\sqrt{b}}$.
Therefore,
$x=2+\sqrt{3}$
$\Rightarrow \frac{1}{x}=\frac{1}{2+\sqrt{3}}$
$=\frac{1(2-\sqrt{3})}{(2+\sqrt{3})(2-\sqrt{3})}$
$=\frac{2-\sqrt{3}}{(2)^{2}-(\sqrt{3})^{2}}$
$=\frac{2-\sqrt{3}}{4-3}$
$=2-\sqrt{3}$
Therefore,
$x+\frac{1}{x}=2+\sqrt{3}+2-\sqrt{3}=4$
Cubing both sides, we get,
$(x+\frac{1}{x})^{3}=(4)^{3}$
$x^{3}+\frac{1}{x^{3}}+3(x+\frac{1}{x})=64$
$\Rightarrow x^{3}+\frac{1}{x^{3}}+3\times 4=64$
$\Rightarrow x^{3}+\frac{1}{x^{3}}=64-12$
$\Rightarrow x^{3}+\frac{1}{x^{3}}=52$
The value of \( x^{3}+\frac{1}{x^{3}} \) is $52$.
- Related Articles
- If \( x-\frac{1}{x}=3+2 \sqrt{2} \), find the value of \( x^{3}- \frac{1}{x^{3}} \).
- If \( x=\frac{\sqrt{3}+1}{2} \), find the value of \( 4 x^{3}+2 x^{2}-8 x+7 \)
- If \( x=3+\sqrt{8} \), find the value of \( x^{2}+\frac{1}{x^{2}} \).
- If \( x^{2}+\frac{1}{x^{2}}=51 \), find the value of \( x^{3}-\frac{1}{x^{3}} \).
- If \( x^{2}+\frac{1}{x^{2}}=98 \), find the value of \( x^{3}+\frac{1}{x^{3}} \).
- If $\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}=x,\ \frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}=y$, find the value $x^{2}+y^{2}+x y$.
- If \( x=\frac{1}{3+2 \sqrt{2}}, \) then the value of \( x-\frac{1}{x} \) is
- Find the value of $x^2+\frac{1}{x^2}$ if $x+\frac{1}{x}=3$.
- If \( x+\frac{1}{x}=5 \), find the value of \( x^{3}+\frac{1}{x^{3}} \).
- If \( x-\frac{1}{x}=7 \), find the value of \( x^{3}-\frac{1}{x^{3}} \).
- If \( x-\frac{1}{x}=5 \), find the value of \( x^{3}-\frac{1}{x^{3}} \).
- If $( \frac{( 3 x-4)^{3}-( x+1)^{3}}{( 3 x-4)^{3}+( x+1)^{3}}=\frac{61}{189})$, find the value of $x$.
- If $\frac{3}{4}(x-1)=x-3$, find the value of $x$.
- If \( x^{4}+\frac{1}{x^{4}}=119 \), find the value of \( x^{3}-\frac{1}{x^{3}} \).
- If $x\ =\ 2\ +\ 3\sqrt{2}$Find $x\ + \frac{4}{x}$.
