- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
$( x-2)$ is a common factor of $x^{3}-4 x^{2}+a x+b$ and $x^{3}-a x^{2}+b x+8$, then the values of $a$ and $b$ are respectively.
Given: $( x-2)$ is a common factor of $x^{3}-4 x^{2}+a x+b$ and $x^{3}-a x^{2}+b x+8$.
To do: To find the value of $a$ and $b$.
Solution:
As given, $( x-2)$ is a common factor of $x^{3}-4 x^{2}+a x+b$ and $x^{3}-a x^{2}+b x+8$
Let $x-2=0$
$\Rightarrow x=2$, Put this value in $x^{3}-4 x^{2}+a x+b$.
$x^{3}-4 x^{2}+a x+b$
$\Rightarrow 2^3-4( 2)^2+a\times 2+b=0$
$\Rightarrow 8-16+2a+b=0$
$\Rightarrow 2a+b-8=0$
$\Rightarrow 2a+b=8$ ....... $( i)$
Again, put $x=2$ value in $x^{3}-a x^{2}+b x+8$
$\Rightarrow 2^3-a( 2)^2+b( 2)+8=0$
$\Rightarrow 8-2a+2b+8=0$
$\Rightarrow -2a+2b=-16$ .......$( ii)$
On adding $( i)$ and $( ii)$,
$2a+b-2a+2b=8-16$
$\Rightarrow 3b=-8$
$\Rightarrow b=-\frac{8}{3}$, put this value in $( i)$
$2a-\frac{8}{3}=8$
$\Rightarrow 2a=8+\frac{8}{3}$
$\Rightarrow 2a=\frac{32}{3}$
$\Rightarrow a=\frac{32}{3}\times\frac{1}{2}$
$\Rightarrow a=\frac{16}{3}$
Thus, $a=\frac{16}{3}$ and $b=-\frac{8}{3}$
- Related Articles
- If \( x+1 \) is a factor of \( 2 x^{3}+a x^{2}+2 b x+1 \), then find the values of \( a \) and \( b \) given that \( 2 a-3 b=4 \).
- If \( x-\sqrt{3} \) is a factor of the polynomial \( a x^{2}+b x-3 \) and \( a+b=2-\sqrt{3} \). Find the values of \( a \) and \( b \).
- Simplify:(i) $2x^2 (x^3 - x) - 3x (x^4 + 2x) -2(x^4 - 3x^2)$(ii) $x^3y (x^2 - 2x) + 2xy (x^3 - x^4)$(iii) $3a^2 + 2 (a + 2) - 3a (2a + 1)$(iv) $x (x + 4) + 3x (2x^2 - 1) + 4x^2 + 4$(v) $a (b-c) - b (c - a) - c (a - b)$(vi) $a (b - c) + b (c - a) + c (a - b)$(vii) $4ab (a - b) - 6a^2 (b - b^2) -3b^2 (2a^2 - a) + 2ab (b-a)$(viii) $x^2 (x^2 + 1) - x^3 (x + 1) - x (x^3 - x)$(ix) $2a^2 + 3a (1 - 2a^3) + a (a + 1)$(x) $a^2 (2a - 1) + 3a + a^3 - 8$(xi) $\frac{3}{2}-x^2 (x^2 - 1) + \frac{1}{4}-x^2 (x^2 + x) - \frac{3}{4}x (x^3 - 1)$(xii) $a^2b (a - b^2) + ab^2 (4ab - 2a^2) - a^3b (1 - 2b)$(xiii) $a^2b (a^3 - a + 1) - ab (a^4 - 2a^2 + 2a) - b (a^3- a^2 -1)$.
- For which values of \( a \) and \( b \), are the zeroes of \( q(x)=x^{3}+2 x^{2}+a \) also the zeroes of the polynomial \( p(x)=x^{5}-x^{4}-4 x^{3}+3 x^{2}+3 x+b \) ? Which zeroes of \( p(x) \) are not the zeroes of \( q(x) \) ?
- Which of the following is a factor of $f( x)=x^{2}-9 x+20?$$A).\ ( x-2)$$B).\ ( x-3)$$C).\ ( x-4)$$D).\ ( x-5)$
- If \( 2 x+3 \) and \( x+2 \) are the factors of the polynomial \( g(x)=2 x^{3}+a x^{2}+27 x+b \), find the value of the constants $a$ and $b$.
- Which of the following is not a polynomial?(a) $x^{2}+\sqrt{2} x+3$ (b) $x^{3}+3 x^{2}-3$ (c) $6 x+4$ d) $x^{2}-\sqrt{2 x}+6$
- Determine which of the following polynomials has \( (x+1) \) a factor:(i) \( x^{3}+x^{2}+x+1 \)(ii) \( x^{4}+x^{3}+x^{2}+x+1 \)(iii) \( x^{4}+3 x^{3}+3 x^{2}+x+1 \)(iv) \( x^{3}-x^{2}-(2+\sqrt{2}) x+\sqrt{2} \)
- Show that:\( \left(\frac{x^{a^{2}+b^{2}}}{x^{a b}}\right)^{a+b}\left(\frac{x^{b^{2}+c^{2}}}{x^{b c}}\right)^{b+c}\left(\frac{x^{c^{2}+a^{2}}}{x^{a c}}\right)^{a+c}= x^{2\left(a^{3}+b^{3}+c^{3}\right)} \)
- Use the Factor Theorem to determine whether \( g(x) \) is a factor of \( p(x) \) in each of the following cases:(i) \( p(x)=2 x^{3}+x^{2}-2 x-1, g(x)=x+1 \)(ii) \( p(x)=x^{3}+3 x^{2}+3 x+1, g(x)=x+2 \)(iii) \( p(x)=x^{3}-4 x^{2}+x+6, g(x)=x-3 \)
- If \( f(x)=x^{2} \) and \( g(x)=x^{3}, \) then \( \frac{f(b)-f(a)}{g(b)-g(a)}= \)
- Choose the correct answer from the given four options in the following questions:Which of the following is not a quadratic equation?(A) \( 2(x-1)^{2}=4 x^{2}-2 x+1 \)(B) \( 2 x-x^{2}=x^{2}+5 \)(C) \( (\sqrt{2} x+\sqrt{3})^{2}+x^{2}=3 x^{2}-5 x \)(D) \( \left(x^{2}+2 x\right)^{2}=x^{4}+3+4 x^{3} \)
- If the zeroes of the quadratic polynomial $x^2+( a+1)x+b$ are $2$ and $-3$, then $a=?,\ b=?$.
- Find the product of the following binomials:(i) \( (2 x+y)(2 x+y) \)(ii) \( (a+2 b)(a-2 b) \)(iii) \( \left(a^{2}+b c\right)\left(a^{2}-b c\right) \)(iv) \( \left(\frac{4 x}{5}-\frac{3 y}{4}\right)\left(\frac{4 x}{5}+\frac{3 y}{4}\right) \)(v) \( \left(2 x+\frac{3}{y}\right)\left(2 x-\frac{3}{y}\right) \)(vi) \( \left(2 a^{3}+b^{3}\right)\left(2 a^{3}-b^{3}\right) \)(vii) \( \left(x^{4}+\frac{2}{x^{2}}\right)\left(x^{4}-\frac{2}{x^{2}}\right) \)(viii) \( \left(x^{3}+\frac{1}{x^{3}}\right)\left(x^{3}-\frac{1}{x^{3}}\right) \).
- Determine which of the following polynomials has \( (x+1) \) a factor:(i) \( x^{3}+x^{2}+x+1 \)(ii) \( x^{4}+x^{3}+x^{2}+x+1 \)
