- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Find the area of the minor segment of a circle of radius $14\ cm$, when its central angle is $60^{o}$. Also find the area of the corresponding major segment. [use $\pi =\frac{22}{7}$]
Given: A circle of radius $14\ cm$.
To do: Find the area of the minor segment of a circle and of the corresponding major segment. when its central angle is $60^{o}$
Solution:
Radius of the circle, $r =14\ cm$
Central Angle$\theta=60^{o}$ ,
Area of the minor segmen$=\frac{\theta }{360^{o}} \times \pi r^{2} -\frac{1}{2} r^{2} sin\theta $
$=\frac{60^{o}}{360^{o}} \times( \frac{22}{7}) \times ( 14)^{2} -\frac{1}{2}( 14)^{2} sin60^{o}$
$=\frac{1\times 22\times 2\times 14}{6} -\frac{1}{2} \times 14\times 14\times \frac{\sqrt{3}}{2}$
$=\frac{22\times 14}{3} -49\sqrt{3}$
$=\frac{308-147\sqrt{3}}{3}$
$\boxed{Area\ of\ the\ minor\ segment\ \ =\frac{308-147\sqrt{3}}{3} \ cm^{2} .\ }$
Advertisements