- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
A chord of a circle of radius $ 20 \mathrm{~cm} $ subtends an angle of $ 90^{\circ} $ at the centre. Find the area of the corresponding major segment of the circle. (Use $ \pi=3.14 $ )
Given:
A chord of a circle of radius \( 20 \mathrm{~cm} \) subtends an angle of \( 90^{\circ} \) at the centre.
To do:
We have to find the area of the corresponding major segment of the circle.
Solution:
Let $AB$ be the chord of a circle of radius $10\ cm$ and $O$ be the centre of the circle.
$\angle \mathrm{AOB}=90^{\circ}$
This implies,
Angle of the major sector $=360^{\circ}-90^{\circ}$
$=270^{\circ}$
Area of the major sector $=\frac{270}{360} \times \pi \times(10)^{2}$
$=\frac{3}{4} \times 3.14 \times 100$
$=75 \times 3.14$
$=235.5 \mathrm{~cm}^{2}$
Draw $\mathrm{OM} \perp \mathrm{AB}$
$\mathrm{AM}=\frac{1}{2} \mathrm{AB}$
$\angle \mathrm{AOM}=\frac{1}{2} \times 90^{\circ}$
$=45^{\circ}$
$\frac{\mathrm{AM}}{\mathrm{OA}}=\sin 45^{\circ}$
$=\frac{1}{\sqrt{2}}$
$\mathrm{AM}=10 \times \frac{1}{\sqrt{2}} \mathrm{~cm}$
Therefore,
$\mathrm{AB}=10 \sqrt{2} \mathrm{~cm}$ and $\mathrm{OM}=\mathrm{OA}$
$\cos 45^{\circ}=10 \times \frac{1}{\sqrt{2}}$
$=5 \sqrt{2} \mathrm{~cm}$
Area of $\Delta \mathrm{OAB}=\frac{1}{2}\times10 \sqrt{2} \times 5 \sqrt{2}$
$=50 \mathrm{~cm}^{2}$
The area of the major segment $=235.5+50$
$=285.5 \mathrm{~cm}^{2}$
The area of the major segment is $285.5 \mathrm{cm}^{2}$.