- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
A chord $ A B $ of a circle, of radius $ 14 \mathrm{~cm} $ makes an angle of $ 60^{\circ} $ at the centre of the circle. Find the area of the minor segment of the circle. (Use $ \pi=22 / 7) $
Given:
A chord \( A B \) of a circle, of radius \( 14 \mathrm{~cm} \) makes an angle of \( 60^{\circ} \) at the centre of the circle.
To do:
We have to find the area of the minor segment of the circle.
Solution:
Radius of the circle $r = 14\ cm$
Angle subtended at the centre $\angle A0B = 60^o$
Area of the minor segment $\mathrm{ACB}=(\frac{\theta \pi}{360^{\circ}}-\sin \frac{\theta}{2} \cos \frac{\theta}{2}) r^2$
$=(\frac{60^{\circ} \times 22}{360^{\circ} \times 7} - sin \frac{60^{\circ}}{2} \cos \frac{60^{\circ}}{2})(14)^{2}$
$=196(\frac{11}{21}-\sin 30^{\circ} \cos 30^{\circ})$
$=196(\frac{11}{21}-\frac{1}{2} \times \frac{\sqrt{3}}{2})$
$=196(\frac{44-21 \sqrt{3}}{84})$
$=\frac{196}{84}(44-21 \times 1.732)$
$=\frac{7}{3}(44-36.37)$
$=\frac{7}{3}(7.63)$
$=17.80 \mathrm{~cm}^{2}$
The area of the minor segment of the circle is $17.80\ cm^2$.