- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Find the area of the minor segment of a circle of radius $ 14 \mathrm{~cm} $, when the angle of the corresponding sector is $ 60^{\circ} . $
Given:
Radius of the circle $=14\ cm$.
The angle of the corresponding sector $=60^{\circ}$.
To do:
We have to find the area of the minor segment of the circle.
Solution:
Let $AB$ be the chord of the circle and $O$ the centre of the circle.
In $\Delta \mathrm{AOB}$,
$\mathrm{OA}=\mathrm{OB}=r$
This implies,
$\Delta \mathrm{AOB}$ is an isosceles triangle.
Let $\angle \mathrm{OAB}=\angle \mathrm{OBA}=\theta$
In $\Delta \mathrm{OAB}$,
$\angle \mathrm{AOB}+\angle \mathrm{OAB}+\angle \mathrm{OBA}=180^{\circ}$
$\Rightarrow 60^{\circ}+\theta+\theta=180^{\circ}$
$\Rightarrow 2 \theta=120^{\circ}$
$\Rightarrow \theta=60^{\circ}$
Therefore,
$\angle \mathrm{OAB}=\angle \mathrm{OBA}=60^{\circ}$
This implies,
$\triangle \mathrm{AOB}$ is an equilateral triangle.
$\mathrm{OA}=\mathrm{OB}=\mathrm{AB}=14 \mathrm{~cm}$
Area of $\Delta O A B=\frac{\sqrt{3}}{4}(14)^{2}$
$=\frac{\sqrt{3}}{4} \times 196$
$=49 \sqrt{3} \mathrm{~cm}^{2}$
Area of the sector $\mathrm{OBAO}=\frac{\theta}{360^{\circ}} \times \pi r^{2} $
$=\frac{22}{7} \times \frac{60^{\circ}}{360} \times 196$
$=\frac{22 \times 2 \times 14}{6}$
$=\frac{22 \times 14}{3}$
$=\frac{308}{3} \mathrm{~cm}^{2}$
Area of the minor segment $=$ Area of sector $OBAO -$ Area of $\Delta OAB$
$=(\frac{308}{3}-49 \sqrt{3}) \mathrm{cm}^{2}$
The area of the minor segment is $(\frac{308}{3}-49 \sqrt{3}) \mathrm{cm}^{2}$.