- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Find all zeroes of the polynomial $f(x)\ =\ 2x^4\ β\ 2x^3\ β\ 7x^2\ +\ 3x\ +\ 6$, if two of its zeroes areΒ $-\sqrt{\frac{3}{2}}$ and $\sqrt{\frac{3}{2}}$.
Given:
$f(x)\ =\ 2x^4\ –\ 2x^3\ –\ 7x^2\ +\ 3x\ +\ 6$ and the two of its zeroes are $-\sqrt{\frac{3}{2}}$ and $\sqrt{\frac{3}{2}}$.
To do:
We have to find all the zeros of $f(x)$.
Solution:
If $-\sqrt{\frac{3}{2}}$ and $\sqrt{\frac{3}{2}}$ are zeros of $f(x)$ then $(x+\sqrt{\frac{3}{2}})(x-\sqrt{\frac{3}{2}})$ is a factor of $f(x)$.
This implies,
$(x+\sqrt{\frac{3}{2}})(x-\sqrt{\frac{3}{2}})=x^2-(\sqrt{\frac{3}{2}})^2=x^2-(\frac{3}{2})$
Therefore,
Dividend$f(x)\ =\ 2x^4\ –\ 2x^3\ –\ 7x^2\ +\ 3x\ +\ 6$
Divisor$=x^2-(\frac{3}{2})$
$x^2-(\frac{3}{2})$)$2x^4-2x^3-7x^2+3x+6$($2x^2-2x-4$
β
Quotient$=2x^2-2x-4$
$f(x)=(x^2-\frac{3}{2})(2x^2-2x-4)$
To find the other zeros put $2x^2-2x-4=0$.
$2x^2-2x-4=0$
$2x^2-4x+2x-4=0$
$2x(x-2)+2(x-2)=0$
$(x-2)(2x+2)=0$
$x-2=0$ and $2x+2=0$
$x=2$ and $2x=-2$
$x=2$ and $x=-1$
All the zeros of $f(x)$ are $-1$, $2$, $-\sqrt{\frac{3}{2}}$ and $\sqrt{\frac{3}{2}}$.