# Given that $\sqrt{2}$ is a zero of the cubic polynomial $6 x^{3}+\sqrt{2} x^{2}-10 x-4 \sqrt{2}$, find its other two zeroes.

#### Complete Python Prime Pack for 2023

9 Courses     2 eBooks

#### Artificial Intelligence & Machine Learning Prime Pack

6 Courses     1 eBooks

#### Java Prime Pack 2023

8 Courses     2 eBooks

Given:

Given polynomial is $6x^3\ +\ \sqrt{2}x^2\ -\ 10x\ -\ 4\sqrt{2}$ and one of its zeros is $\sqrt2$.

To do:

We have to find all the zeros of the given polynomial.

Solution:

If $a$ is a zero of $f(x)$ then $(x-a)$ is a factor of $f(x)$.

Therefore,

$x-\sqrt{2}$ is a factor of the given polynomial.

On applying the division algorithm,

Dividend$=6x^3+\sqrt{2}x^2-10x-4\sqrt{2}$

Divisor$x-\sqrt{2}$

$x-\sqrt2$)$6x^3+\sqrt{2}x^2-10x-4\sqrt{2}$($6x^2+7\sqrt{2}x+4$

$6x^3-6\sqrt{2}x^2$

-----------------------------

$7\sqrt{2}x^2-10x-4\sqrt{2}$

$7\sqrt{2}x^2-14x$

-----------------------

$4x-4\sqrt{2}$

$4x-4\sqrt{2}$

----------------------

$0$

Therefore,

Quotient$=6x^2+7\sqrt{2}x+4$

$6x^3+\sqrt{2}x^2-10x-4\sqrt{2}=(x-\sqrt{2})(6x^2+7\sqrt{2}x+4)$

To get the other zeros, put $6x^2+7\sqrt{2}x+4=0$.

$6x^2+7\sqrt{2}x+4=0$

$6x^2+3\sqrt{2}x+4\sqrt{2}x+4=0$

$3x(2x+\sqrt2)+2\sqrt2(2x+\sqrt2)=0$

$(3x+2\sqrt2)(2x+\sqrt2)=0$

$3x+2\sqrt2=0$ or $2x+\sqrt2=0$

$3x=-2\sqrt2$ or $2x=-\sqrt2$

$x=-\frac{2\sqrt2}{3}$ or $x=-\frac{\sqrt2}{2}$

All the zeros of the given polynomial are $\sqrt{2}$, $-\frac{2\sqrt2}{3}$ and $-\frac{\sqrt2}{2}$.

Updated on 10-Oct-2022 13:27:09