Find all zeros of the polynomial $2x^4\ -\ 9x^3\ +\ 5x^2\ +\ 3x\ -\ 1$, if two of its zeros are $2\ +\ \sqrt{3}$ and $2\ -\ \sqrt{3}$.
Given:
Given polynomial is $2x^4\ -\ 9x^3\ +\ 5x^2\ +\ 3x\ -\ 1$ and two of its zeroes are $2\ +\ \sqrt{3}$ and $2\ -\ \sqrt{3}$.
To do:
We have to find all the zeros of the given polynomial.
Solution:
If $2\ +\ \sqrt{3}$ and $2\ -\ \sqrt{3}$ are zeros of the given polynomial then $(x-(2+\sqrt3))(x-(2-\sqrt3))$ is a factor of it.
This implies,
$(x-(2+\sqrt3))(x-(2-\sqrt3))=x^2-(2-\sqrt3)x-(2+\sqrt3)x+(2-\sqrt3)(2+\sqrt3)$
$=x^2-2x+\sqrt{3}x-2x-\sqrt{3}x+(2^2-(\sqrt3)^2)$
$=x^2-4x+(4-3)$
$=x^2-4x+1$
Therefore,
Dividend$=2x^4-9x^3+5x^2+3x-1$
Divisor$=x^2-4x+1$
$x^2-4x+1$)$2x^4-9x^3+5x^2+3x-1$($2x^2-x-1$
$2x^4-8x^3 +2x^2$
------------------------------------
$-x^3+3x^2+3x-1$
$-x^3+4x^2 -x$
------------------------
$-x^2+4x-1$
$-x^2+4x-1$
------------------
$0$
Quotient$=2x^2-x-1$
To find the other zeros put $2x^2-x-1$.
$2x^2-x-1=0$
$2x^2+2x-x-1=0$
$2x(x+1)-1(x+1)=0$
$(x+1)(2x-1)=0$
$x+1=0$ or $2x-1=0$
$x=-1$ or $2x=1$
$x=-1$ or $x=\frac{1}{2}$
All the zeros of the given polynomial are $2\ +\ \sqrt{3}$, $2\ -\ \sqrt{3}$, $-1$ and $\frac{1}{2}$.
- Related Articles
- Find all zeroes of the polynomial $( 2x^{4}-9x^{3}+5x^{2}+3x-1)$ if two of its zeroes are $(2+\sqrt{3}) and (2-\sqrt{3)}$.
- Find all zeros of the polynomial $x^3\ +\ 3x^2\ -\ 2x\ -\ 6$, if two of its zeros are $-\sqrt{2}$ and $\sqrt{2}$.
- Find all zeros of the polynomial $2x^3\ +\ x^2\ -\ 6x\ -\ 3$, if two of its zeros are $-\sqrt{3}$ and $\sqrt{3}$.
- Find all zeros of the polynomial $2x^4\ +\ 7x^3\ -\ 19x^2\ -\ 14x\ +\ 30$, if two of its zeros are $\sqrt{2}$ and $-\sqrt{2}$.
- Find all zeroes of the polynomial $f(x)\ =\ 2x^4\ –\ 2x^3\ –\ 7x^2\ +\ 3x\ +\ 6$, if two of its zeroes are $-\sqrt{\frac{3}{2}}$ and $\sqrt{\frac{3}{2}}$.
- Obtain all zeroes of the polynomial $f(x)\ =\ x^4\ –\ 3x^3\ –\ x^2\ +\ 9x\ –\ 6$, if the two of its zeroes are $-\sqrt{3}$ and $\sqrt{3}$.
- If two zeroes of the polynomial $x^{3} -4x^{2} -3x+12=0$ are $\sqrt{3}$ and $-\sqrt{3}$, then find its third zero.
- Obtain all other zeroes of $3x^4 + 6x^3 - 2x^2 - 10x - 5$, if two of its zeroes are $\sqrt{\frac{5}{3}}$ and $-\sqrt{\frac{5}{3}}$.
- Find all the zeroes of the polynomial $x^4\ +\ x^3\ –\ 34x^2\ –\ 4x\ +\ 120$, if the two of its zeros are $2$ and $-2$.
- Find the zeros of the following quadratic polynomial and verify the relationship between the zeros and their coefficients:$f(x)\ =\ x^2\ –\ (\sqrt{3}\ +\ 1)x\ +\ \sqrt{3}$
- Find all zeroes of the polynomial $3x^3\ +\ 10x^2\ -\ 9x\ –\ 4$, if one of its zeroes is 1.
- Simplify the following:$(\frac{\sqrt{3}}{\sqrt{2}+1})^2 + (\frac{\sqrt{3}}{\sqrt{2}-1})^2 +(\frac{\sqrt{2}}{\sqrt{3}})^2 $
- Find All The Zeroes Of The Polynomial $ 3x^{3}+10x^{2}-9x-4$, If One Of Its Zeroes Is 1.
- If $\frac{\sqrt{3}+\sqrt{2}}{\sqrt{3}-\sqrt{2}}=x,\ \frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}+\sqrt{2}}=y$, find the value $x^{2}+y^{2}+x y$.
- Simplify:\( \frac{3 \sqrt{2}-2 \sqrt{3}}{3 \sqrt{2}+2 \sqrt{3}}+\frac{\sqrt{12}}{\sqrt{3}-\sqrt{2}} \)
Kickstart Your Career
Get certified by completing the course
Get Started