- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Find all zeroes of the polynomial $( 2x^{4}-9x^{3}+5x^{2}+3x-1)$ if two of its zeroes are $(2+\sqrt{3}) and (2-\sqrt{3)}$.
Given: Polynomial $( 2x^{4}-9x^{3}+5x^{2}+3x-1)$ and two of its zeroes are$( 2+\sqrt{3})$ and $( 2-\sqrt{3})$.
To do: To find all its zeroes.
Solution:
It is given that (2+\sqrt{3}) and (2-\sqrt{3} ) are two zeroes
$[x- (2+\sqrt{3})][x-(2-\sqrt{3} )] =(x- 2-\sqrt{3})(x- 2+\sqrt{3})$
$=[(x-2)-\sqrt{3}][(x-2)-\sqrt{3}]$
$=(x-2)^{2}-(\sqrt{3})^{2}$
$=x^{2}+4-4x-3$
$=x^{2}-4x+1$
$x^{2}-4x+1$ is a factor of the given polynomial.
On dividing the given polynomial by this factor.

Hence $2x^{2}-x-1$ is also a factor of the given polynomial.
$2x^{2}-x-1=2x^{2}-2x+x-1$
$=2x( x-1)+( x-1)$
$=( x-1)( 2x+1)$
if $x-1=0$
$x=1$
If $2x+1=0$
$x=-\frac{1}{2}$
Hence the other two zeroes are 1 and $-\frac{1}{2}$. of the given polynomial.
Advertisements