- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
If $ x+y+z=0 $, show that $ x^{3}+y^{3}+z^{3}=3 x y z $.
Given:
$x+y+z = 0$
To do:
We have to show that $x^{3}+y^{3}+z^{3}=3xyz$
Solution:
We know that,$x^{3}+y^{3}+z^{3}-3xyz=(x+y+z)(x^{2}+y^{2}+z^{2}-xy-yz-zx)$
Therefore,
$x^{3}+y^{3}+z^{3}-3xyz= (0)(x^{2}+y^{2}+z^{2}-xy-yz-zx)$ [Since $x+y+z =0$]
$x^{3}+y^{3}+z^{3}-3xyz=0$
$x^{3}+y^{3}+z^{3}=3xyz$
Hence proved.Advertisements