- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
If two positive integers $a$ and $b$ are written as $a = x^3y^2$ and $b = xy^3; x, y$ are prime numbers, then HCF $(a, b)$ is
(A) $xy$
(B) $xy^2$
(C) $x^3y^3$
(D) $x^2y^2$
Given:
Two positive integers $a$ and $b$ are written as $a = x^3y^2$ and $b = xy^3; x, y$ are prime numbers.
To find:
Here we have to find HCF $(a, b)$.
Solution:
We know that,
HCF is the product of the smallest power of each common prime factor involved in the numbers.
$a = x^3y^2$
$= x \times x^2\times y^2$
$b = xy^3$
$= x \times y^2 \times y$
Therefore,
HCF of $a$ and $b$ is,
HCF $(x^3y^2, xy^3) = x \times y^2$
$= xy^2$
- Related Articles
- Simplify: $2(x^2 - y^2 +xy) -3(x^2 +y^2 -xy)$.
- Factorise:$ab(x^2+y^2)-xy(a^2+b^2)$
- Solve $-2(xy^2-x^2y)+5-xy$ when $x=-5$ and $y=5$.
- 1. Factorize the expression \( 3 x y - 2 + 3 y - 2 x \)A) \( (x+1),(3 y-2) \)B) \( (x+1),(3 y+2) \)C) \( (x-1),(3 y-2) \)D) \( (x-1),(3 y+2) \)2. Factorize the expression \( \mathrm{xy}-\mathrm{x}-\mathrm{y}+1 \)A) \( (x-1),(y+1) \)B) \( (x+1),(y-1) \)C) \( (x-1),(y-1) \)D) \( (x+1),(y+1) \)
- $( x-2)$ is a common factor of $x^{3}-4 x^{2}+a x+b$ and $x^{3}-a x^{2}+b x+8$, then the values of $a$ and $b$ are respectively.
- If \( a \) and \( b \) are distinct positive primes such that \( \sqrt[3]{a^{6} b^{-4}}=a^{x} b^{2 y} \), find \( x \) and \( y \).
- Show that:\( \left(\frac{x^{a^{2}+b^{2}}}{x^{a b}}\right)^{a+b}\left(\frac{x^{b^{2}+c^{2}}}{x^{b c}}\right)^{b+c}\left(\frac{x^{c^{2}+a^{2}}}{x^{a c}}\right)^{a+c}= x^{2\left(a^{3}+b^{3}+c^{3}\right)} \)
- If $x+y=5$ and $xy=6$ then find $x^3+y^3$.
- If \( x+1 \) is a factor of \( 2 x^{3}+a x^{2}+2 b x+1 \), then find the values of \( a \) and \( b \) given that \( 2 a-3 b=4 \).
- Simplify:(i) $2x^2 (x^3 - x) - 3x (x^4 + 2x) -2(x^4 - 3x^2)$(ii) $x^3y (x^2 - 2x) + 2xy (x^3 - x^4)$(iii) $3a^2 + 2 (a + 2) - 3a (2a + 1)$(iv) $x (x + 4) + 3x (2x^2 - 1) + 4x^2 + 4$(v) $a (b-c) - b (c - a) - c (a - b)$(vi) $a (b - c) + b (c - a) + c (a - b)$(vii) $4ab (a - b) - 6a^2 (b - b^2) -3b^2 (2a^2 - a) + 2ab (b-a)$(viii) $x^2 (x^2 + 1) - x^3 (x + 1) - x (x^3 - x)$(ix) $2a^2 + 3a (1 - 2a^3) + a (a + 1)$(x) $a^2 (2a - 1) + 3a + a^3 - 8$(xi) $\frac{3}{2}-x^2 (x^2 - 1) + \frac{1}{4}-x^2 (x^2 + x) - \frac{3}{4}x (x^3 - 1)$(xii) $a^2b (a - b^2) + ab^2 (4ab - 2a^2) - a^3b (1 - 2b)$(xiii) $a^2b (a^3 - a + 1) - ab (a^4 - 2a^2 + 2a) - b (a^3- a^2 -1)$.
- If the zeroes of the quadratic polynomial $x^2+( a+1)x+b$ are $2$ and $-3$, then $a=?,\ b=?$.
- If \( x=a, y=b \) is the solution of the equations \( x-y=2 \) and \( x+y=4 \), then the values of \( a \) and \( b \) are, respectively(A) 3 and 5(B) 5 and 3(C) 3 and 1,b>(D) \( -1 \) and \( -3 \)
- If \( a^{x}=b^{y}=c^{z} \) and \( b^{2}=a c \), then show that \( y=\frac{2 z x}{z+x} \).
- If a and b are different positive primes such that\( \left(\frac{a^{-1} b^{2}}{a^{2} b^{-4}}\right)^{7} \p\left(\frac{a^{3} b^{-5}}{a^{-2} b^{3}}\right)=a^{x} b^{y} \), find \( x \) and \( y . \)
- If \( 2 x+3 \) and \( x+2 \) are the factors of the polynomial \( g(x)=2 x^{3}+a x^{2}+27 x+b \), find the value of the constants $a$ and $b$.

Advertisements