If a and b are different positive primes such that$ \left(\frac{a^{-1} b^{2}}{a^{2} b^{-4}}\right)^{7} \p\left(\frac{a^{3} b^{-5}}{a^{-2} b^{3}}\right)=a^{x} b^{y} $, find $ x $ and $ y . $
Given:
a and b are different positive primes such that
\( \left(\frac{a^{-1} b^{2}}{a^{2} b^{-4}}\right)^{7} \div\left(\frac{a^{3} b^{-5}}{a^{-2} b^{3}}\right)=a^{x} b^{y} \).
To do:
We have to find \( x \) and \( y \).
Solution:
We know that,
$(a^{m})^{n}=a^{m n}$
$a^{m} \times a^{n}=a^{m+n}$
$a^{m} \div a^{n}=a^{m-n}$
$a^{0}=1$
Therefore,
$(\frac{a^{-1} b^{2}}{a^{2} b^{-4}})^{7} \div(\frac{a^{3} b^{-5}}{a^{-2} b^{3}})=a^{x} b^{y}$
$\frac{a^{-7} b^{14}}{a^{14}b^{-28}} \div \frac{a^{3} b^{-5}}{a^{-2} b^{3}}=a^{x} b^{y}$
$\frac{a^{-7} b^{14}}{a^{14}b^{-28}} \times \frac{a^{-2} b^{3}}{a^{3} b^{-5}}=a^{x} b^{y}$
$a^{-7-14-2-3} \times b^{14+28+3+5}=a^{x} b^{y}$
$a^{-26} \times b^{50}=a^{x} b^{y}$
Comparing both sides, we get,
$x=-26$ and $y=50$
The values of $x$ and $y$ are $-26$ and $50$ respectively.
Related Articles Find the product of the following binomials:(i) \( (2 x+y)(2 x+y) \)(ii) \( (a+2 b)(a-2 b) \)(iii) \( \left(a^{2}+b c\right)\left(a^{2}-b c\right) \)(iv) \( \left(\frac{4 x}{5}-\frac{3 y}{4}\right)\left(\frac{4 x}{5}+\frac{3 y}{4}\right) \)(v) \( \left(2 x+\frac{3}{y}\right)\left(2 x-\frac{3}{y}\right) \)(vi) \( \left(2 a^{3}+b^{3}\right)\left(2 a^{3}-b^{3}\right) \)(vii) \( \left(x^{4}+\frac{2}{x^{2}}\right)\left(x^{4}-\frac{2}{x^{2}}\right) \)(viii) \( \left(x^{3}+\frac{1}{x^{3}}\right)\left(x^{3}-\frac{1}{x^{3}}\right) \).
If a and b are different positive primes such that\( (a+b)^{-1}\left(a^{-1}+b^{-1}\right)=a^{x} b^{y} \), find \( x+y+2 . \)
Write the following squares of bionomials as trinomials:(i)\( (x+2)^{2} \)(ii) \( (8 a+3 b)^{2} \)(iii) \( (2 m+1)^{2} \)(iv) \( \left(9 a+\frac{1}{6}\right)^{2} \)(v) \( \left(x+\frac{x^{2}}{2}\right)^{2} \)(vi) \( \left(\frac{x}{4}-\frac{y}{3}\right)^{2} \)(vii) \( \left(3 x-\frac{1}{3 x}\right)^{2} \)(viii) \( \left(\frac{x}{y}-\frac{y}{x}\right)^{2} \)(ix) \( \left(\frac{3 a}{2}-\frac{5 b}{4}\right)^{2} \)(x) \( \left(a^{2} b-b c^{2}\right)^{2} \)(xi) \( \left(\frac{2 a}{3 b}+\frac{2 b}{3 a}\right)^{2} \)(xii) \( \left(x^{2}-a y\right)^{2} \)
(i) \( x^{2}-3 x+5-\frac{1}{2}\left(3 x^{2}-5 x+7\right) \)(ii) \( [5-3 x+2 y-(2 x-y)]-(3 x-7 y+9) \)(iii) \( \frac{11}{2} x^{2} y-\frac{9}{4} x y^{2}+\frac{1}{4} x y-\frac{1}{14} y^{2} x+\frac{1}{15} y x^{2}+ \) \( \frac{1}{2} x y \)(iv) \( \left(\frac{1}{3} y^{2}-\frac{4}{7} y+11\right)-\left(\frac{1}{7} y-3+2 y^{2}\right)- \) \( \left(\frac{2}{7} y-\frac{2}{3} y^{2}+2\right) \)(v) \( -\frac{1}{2} a^{2} b^{2} c+\frac{1}{3} a b^{2} c-\frac{1}{4} a b c^{2}-\frac{1}{5} c b^{2} a^{2}+ \) \( \frac{1}{6} c b^{2} a+\frac{1}{7} c^{2} a b+\frac{1}{8} c a^{2} b \).
Show that:\( \left(\frac{x^{a^{2}+b^{2}}}{x^{a b}}\right)^{a+b}\left(\frac{x^{b^{2}+c^{2}}}{x^{b c}}\right)^{b+c}\left(\frac{x^{c^{2}+a^{2}}}{x^{a c}}\right)^{a+c}= x^{2\left(a^{3}+b^{3}+c^{3}\right)} \)
If \( x=a \cos ^{3} \theta, y=b \sin ^{3} \theta \), prove that \( \left(\frac{x}{a}\right)^{2 / 3}+\left(\frac{y}{b}\right)^{2 / 3}=1 \)
Simplify each of the following.(a) \( \left(\frac{1}{2} a-b\right)\left(\frac{1}{2} a+b\right)\left(\frac{1}{4} a^{2}+b^{2}\right) \)(b) \( \left(\frac{p}{2}-\frac{q}{3}\right)\left(\frac{p}{2}+\frac{q}{3}\right)\left(\frac{p^{2}}{4}+\frac{q^{2}}{9}\right)\left(\frac{p^{4}}{16}+\frac{a^{4}}{81}\right) \)(c) \( \left(a^{2}+1-a\right)\left(a^{2}-1+a\right) \)(d) \( \left(4 b^{2}+2 b+1\right)\left(4 b^{2}-2 b-1\right) \)
Find and correct the errors in the following.(a) \( (2 x+5)^{2}=4 x^{2}+25 \)(b) \( \left(x-\frac{1}{2}\right)\left(x-\frac{1}{2}\right)=x^{2}-\frac{1}{4} \)(c) \( (5 a-b)^{2}=10 a^{2}-5 a b+b^{2} \)(d) \( (p-3)(p-7)=p^{2}+21 \)
Show that:\( \left[\left\{\frac{x^{a(a-b)}}{x^{a(a+b)}}\right\} \p\left\{\frac{x^{b(b-a)}}{x^{b(b+a)}}\right\}\right]^{a+b}=1 \)
Prove that:\( \left(\frac{x^{a}}{x^{b}}\right)^{a^{2}+a b+b^{2}} \times\left(\frac{x^{b}}{x^{c}}\right)^{b^{2}+b c+c^{2}} \times\left(\frac{x^{c}}{x^{a}}\right)^{c^{2}+c a+a^{2}}=1 \)
Prove that:\( \left(\frac{x^{a}}{x^{-b}}\right)^{a^{2}-a b+b^{2}} \times\left(\frac{x^{b}}{x^{-c}}\right)^{b^{2}-b c+c^{2}} \times\left(\frac{x^{c}}{x^{-a}}\right)^{c^{2}-c a+a^{2}}=1 \)
If \( a \) and \( b \) are distinct positive primes such that \( \sqrt[3]{a^{6} b^{-4}}=a^{x} b^{2 y} \), find \( x \) and \( y \).
Find the following product.\( \left(\frac{-2}{7} a^{4}\right) \times\left(\frac{-3}{4} a^{2} b\right) \times\left(\frac{-14}{5} b^{2}\right) \)
Add the following algebraic expressions(i) \( 3 a^{2} b,-4 a^{2} b, 9 a^{2} b \)(ii) \( \frac{2}{3} a, \frac{3}{5} a,-\frac{6}{5} a \)(iii) \( 4 x y^{2}-7 x^{2} y, 12 x^{2} y-6 x y^{2},-3 x^{2} y+5 x y^{2} \)(iv) \( \frac{3}{2} a-\frac{5}{4} b+\frac{2}{5} c, \frac{2}{3} a-\frac{7}{2} b+\frac{7}{2} c, \frac{5}{3} a+ \) \( \frac{5}{2} b-\frac{5}{4} c \)(v) \( \frac{11}{2} x y+\frac{12}{5} y+\frac{13}{7} x,-\frac{11}{2} y-\frac{12}{5} x-\frac{13}{7} x y \)(vi) \( \frac{7}{2} x^{3}-\frac{1}{2} x^{2}+\frac{5}{3}, \frac{3}{2} x^{3}+\frac{7}{4} x^{2}-x+\frac{1}{3} \) \( \frac{3}{2} x^{2}-\frac{5}{2} x-2 \)
Multiply:\( \left(\frac{-a}{7}+\frac{a^{2}}{9}\right) \) by \( \left(\frac{b}{2}-\frac{b^{2}}{3}\right) \)
Kickstart Your Career
Get certified by completing the course
Get Started