If $ x=a, y=b $ is the solution of the equations $ x-y=2 $ and $ x+y=4 $, then the values of $ a $ and $ b $ are, respectively
(A) 3 and 5
(B) 5 and 3
(C) 3 and 1
,b>(D) $ -1 $ and $ -3 $

AcademicMathematicsNCERTClass 10

Given:

\( x=a, y=b \) is the solution of the equations \( x-y=2 \) and \( x+y=4 \).

To do:

We have to find the the values of \( a \) and \( b \).

Solution:

If $x = a$ and $y = b$ is the solution of the equations $x - y = 2$ and $x+ y = 4$, then these values must satisfy the equations.

Therefore,

$a-b=2$....(i)

$a+b=4$......(ii)

Adding (i) and (ii), we get,

$2a=6$

$a=3$

This implies,

$b=4-3=1$

raja
Updated on 10-Oct-2022 13:27:13

Advertisements