
- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
How to extract the model equation from model object in R?
To extract the model equation model object, we can use the model object name with dollar sign and call function. For example, if we have a model object name Model then the model equation can be extracted by using Model$call. This will directly present the equation that was used to create the model.
Example1
x1<−rnorm(20,1,0.2) x2<−rnorm(20,1,0.5) y1<−rnorm(20,5,1) Model1<−lm(y1~x1+x2) summary(Model1)
Output
Call: lm(formula = y1 ~ x1 + x2) Residuals: Min 1Q Median 3Q Max −1.4419 −0.6894 −0.2993 0.7183 1.7525 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 5.4266 0.8572 6.331 7.53e−06 *** x1 −0.1942 0.7662 −0.253 0.803 x2 −0.3554 0.3972 −0.895 0.383 −−− Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 0.9826 on 17 degrees of freedom Multiple R−squared: 0.05325, Adjusted R−squared: −0.05813 F−statistic: 0.4781 on 2 and 17 DF, p−value: 0.628 Model1$call lm(formula = y1 ~ x1 + x2)
Example2
Model2<−lm(y1~x1+x2+x1*x2) summary(Model2)
Output
Call: lm(formula = y1 ~ x1 + x2 + x1 * x2) Residuals: Min 1Q Median 3Q Max −1.39281 −0.75354 −0.04841 0.64300 1.55856 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 4.5049 1.4569 3.092 0.00699 ** x1 0.7627 1.4416 0.529 0.60401 x2 1.7243 2.6722 0.645 0.52790 x1:x2 −2.0166 2.5617 −0.787 0.44267 −−− Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 0.9938 on 16 degrees of freedom Multiple R−squared: 0.08855, Adjusted R−squared: −0.08234 F−statistic: 0.5182 on 3 and 16 DF, p−value: 0.6757 Model2$call lm(formula = y1 ~ x1 + x2 + x1 * x2)
Example3
Model3<−lm(y1~x1+x2+x1*x2+x1^2+x2^2) summary(Model3)
Output
Call: lm(formula = y1 ~ x1 + x2 + x1 * x2 + x1^2 + x2^2) Residuals: Min 1Q Median 3Q Max −1.39281 −0.75354 −0.04841 0.64300 1.55856 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 4.5049 1.4569 3.092 0.00699 ** x1 0.7627 1.4416 0.529 0.60401 x2 1.7243 2.6722 0.645 0.52790 x1:x2 −2.0166 2.5617 −0.787 0.44267 −−− Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 0.9938 on 16 degrees of freedom Multiple R−squared: 0.08855, Adjusted R−squared: −0.08234 F−statistic: 0.5182 on 3 and 16 DF, p−value: 0.6757 Model3$call lm(formula = y1 ~ x1 + x2 + x1 * x2 + x1^2 + x2^2)
Example4
Model4<−lm(y1~x1+x2+x1*x2+x1^2+x2^2+x1^3+x2^3) summary(Model4)
Output
Call: lm(formula = y1 ~ x1 + x2 + x1 * x2 + x1^2 + x2^2 + x1^3 + x2^3) Residuals: Min 1Q Median 3Q Max −1.39281 −0.75354 −0.04841 0.64300 1.55856 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 4.5049 1.4569 3.092 0.00699 ** x1 0.7627 1.4416 0.529 0.60401 x2 1.7243 2.6722 0.645 0.52790 x1:x2 −2.0166 2.5617 −0.787 0.44267 −−− Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 0.9938 on 16 degrees of freedom Multiple R−squared: 0.08855, Adjusted R−squared: −0.08234 F−statistic: 0.5182 on 3 and 16 DF, p−value: 0.6757 Model4$call lm(formula = y1 ~ x1 + x2 + x1 * x2 + x1^2 + x2^2 + x1^3 + x2^3)
Example5
Model5<−lm(y1~x1+x2+x1*x2+x1^2+x2^2+x1^3+x2^3+exp(x1)+exp(x2)) summary(Model5)
Output
Call: lm(formula = y1 ~ x1 + x2 + x1 * x2 + x1^2 + x2^2 + x1^3 + x2^3 + exp(x1) + exp(x2)) Residuals: Min 1Q Median 3Q Max −1.4709 −0.4401 −0.0917 0.6385 1.6444 Coefficients: Estimate Std. Error t value Pr(>|t|) (Intercept) 3.5360 1.5679 2.255 0.0407 * x1 6.4664 3.5377 1.828 0.0890 . x2 1.1568 2.7512 0.420 0.6805 exp(x1) −1.5881 0.9112 −1.743 0.1033 exp(x2) 0.2382 0.4782 0.498 0.6261 x1:x2 −2.4765 2.5267 −0.980 0.3437 −−− Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 Residual standard error: 0.9619 on 14 degrees of freedom Multiple R−squared: 0.2529, Adjusted R−squared: −0.01398 F−statistic: 0.9476 on 5 and 14 DF, p−value: 0.4811 Model5$call lm(formula = y1 ~ x1 + x2 + x1 * x2 + x1^2 + x2^2 + x1^3 + x2^3 + exp(x1) + exp(x2))
- Related Questions & Answers
- How to extract the residuals and predicted values from linear model in R?
- Comparison between E-R Model and Object Oriented Model
- Converting E-R model into relational model
- How to extract odds ratio of intercept and slope coefficient from simple logistic model in R?
- Object-oriented Data Model
- Object-relational Data Model
- How to remove interaction from regression model in stargazer in R?
- Difference Between E-R Model and Relational Model in DBMS
- Django model object hit counting
- How to create a polynomial model in R?
- How to create polynomial regression model in R?
- How to create a JSON Object using Object Model in Java?
- Explain the object oriented data model in DBMS?
- How to extract the regression coefficients, standard error of coefficients, t scores, and p-values from a regression model in R?
- Examples of E-R model
Advertisements