- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
How to remove interaction from regression model in stargazer in R?
To remove interaction from regression model in stargazer in R, we can follow the below steps −
- First of all, create a data frame.
- Then, create a regression model using stargazer.
- After that, create the regression model with stargazer without interaction terms.
Create the data frame
Let's create a data frame as shown below −
x1<-sample(1:50,25) x2<-sample(1:50,25) x3<-sample(1:50,25) x4<-sample(1:50,25) y<-sample(1:100,25) df<-data.frame(x1,x2,x3,x4,y) df
On executing, the above script generates the below output(this output will vary on your system due to randomization) −
x1 x2 x3 x4 y 1 40 17 49 12 29 2 3 3 31 5 44 3 16 18 34 32 91 4 15 49 30 15 98 5 14 13 50 23 34 6 7 32 16 13 79 7 44 39 26 26 68 8 45 10 19 31 96 9 38 34 45 20 40 10 36 31 2 17 1 11 8 11 20 48 60 12 6 23 4 43 75 13 35 5 15 9 49 14 4 20 35 45 46 15 32 26 18 49 66 16 42 38 25 11 36 17 46 24 14 21 94 18 30 19 29 50 64 19 13 1 5 18 97 20 21 21 17 27 25 21 1 40 41 10 89 22 41 25 8 29 63 23 22 29 38 47 24 24 9 14 13 28 85 25 29 2 37 34 93
Create the regression model using stargazer
Using stargazer to create the regression model in text format −
x1<-sample(1:50,25) x2<-sample(1:50,25) x3<-sample(1:50,25) x4<-sample(1:50,25) y<-sample(1:100,25) df<-data.frame(x1,x2,x3,x4,y) library(stargazer) Model<-lm(y~x1+x2+x3+x4+x1*x2+x1*x3+x1*x4+x2*x3+x2*x4+x3*x4) stargazer(Model,type="text")
Output
================================================ Dependent variable: --------------------------- y ----------------------------------------------- x1 -1.177 (1.440) x2 0.485 (1.449) x3 -1.502 (1.463) x4 1.087 (1.439) x1:x2 -0.023 (0.032) x1:x3 0.012 (0.031) x1:x4 0.055* (0.030) x2:x3 0.054 (0.037) x2:x4 -0.081* (0.044) x3:x4 -0.016 (0.037) Constant 84.551* (46.877) ----------------------------------------------- Observations 25 R2 0.483 Adjusted R2 0.114 Residual Std. Error 26.194 (df = 14) F Statistic 1.310 (df = 10; 14) =============================================== Note: *p<0.1; **p<0.05; ***p<0.01
Create the regression model using stargazer without interaction terms
Using stargazer to create the regression model in text format by ignoring interaction terms with omit function −
x1<-sample(1:50,25) x2<-sample(1:50,25) x3<-sample(1:50,25) x4<-sample(1:50,25) y<-sample(1:100,25) df<-data.frame(x1,x2,x3,x4,y) library(stargazer) Model<-lm(y~x1+x2+x3+x4+x1*x2+x1*x3+x1*x4+x2*x3+x2*x4+x3*x4) stargazer(Model,type="text",omit=":")
Output
=============================================== Dependent variable: --------------------------- y ----------------------------------------------- x1 -1.177 (1.440) x2 0.485 (1.449) x3 -1.502 (1.463) x4 1.087 (1.439) Constant 84.551* (46.877) ----------------------------------------------- Observations 25 R2 0.483 Adjusted R2 0.114 Residual Std. Error 26.194 (df = 14) F Statistic 1.310 (df = 10; 14) =============================================== Note: *p<0.1; **p<0.05; ***p<0.01
- Related Articles
- How to add title to regression model using stargazer in R?
- How to create an only interaction regression model in R?
- How to display p-value with coefficients in stargazer output for linear regression model in R?
- How to create a regression model in R with interaction between all combinations of two variables?
- How to create polynomial regression model in R?
- How to create a linear model with interaction term only in R?
- How to find the point estimate using regression model in R?
- How to find the degrees of freedom of residual from a regression model in R?
- How to display R-squared value on scatterplot with regression model line in R?
- How to find residual variance of a linear regression model in R?
- How to extract the regression coefficients, standard error of coefficients, t scores, and p-values from a regression model in R?
- How to find the standardized coefficients of a linear regression model in R?
- How to find the high leverage values for a regression model in R?
- How to create regression model line in a scatterplot created by using ggplot2 in R?
- How to display regression slope using model in a plot created by ggplot2 in R?

Advertisements