- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Found 295 Articles for Machine Learning

Updated on 25-Apr-2023 12:38:04
Parameters and hyperparameters are two concepts used often but with different connotations in the field of machine learning. For creating and improving machine learning models, it is crucial to comprehend the distinctions between these two ideas. In this blog article, we will describe parameters and hyperparameters, how they vary, and how they are utilized in machine learning models. What are the Parameters? Parameters in machine learning are the variables that the model learns while being trained. Based on the input data, the model's predictions are affected by these factors. To put it another way, parameters are the model coefficients that ... Read More 
Updated on 25-Apr-2023 12:31:18
Neural networks and logistic regression are significant machine learning technologies that help solve a variety of classification and regression problems. These models have gained popularity as a result of their precision in making predictions and their adaptability in processing various kinds of data. Neural networks, for instance, are useful in fields like picture identification and natural language processing because they can recognize patterns in data that are difficult to see and capture non-linear correlations in data. On the other hand, since it is straightforward and simple to understand, binary outcome situations frequently benefit from using logistic regression. In addition, more ... Read More 
Updated on 25-Apr-2023 12:27:06
The two primary machine learning paradigms i.e -generative and discriminative models, both are widely applied in a variety of fields. To put it another way, discriminative models concentrate on modeling the border that divides several classes of data, whereas generative models seek to capture the underlying distribution of the data. Data scientists and machine learning experts must be aware of the distinctions between these two types of models in order to select the best model for a certain job. Moreover, discriminative models are frequently employed in tasks like classification and regression, despite the fact that generative models have lately become ... Read More 
Updated on 25-Apr-2023 12:22:55
Entropy and information gain are key concepts in domains such as information theory, data science, and machine learning. Information gain is the amount of knowledge acquired during a certain decision or action, whereas entropy is a measure of uncertainty or unpredictability. People can handle difficult situations and make wise judgments across a variety of disciplines when they have a solid understanding of these principles. Entropy can be used in data science, for instance, to assess the variety or unpredictable nature of a dataset, whereas Information Gain can assist in identifying the qualities that would be most useful to include in ... Read More 
Updated on 25-Apr-2023 12:17:03
For machine learning models to perform at their best, selecting the right classifier algorithm is essential. Due to the large range of approaches available, selecting the best classification algorithm could be challenging. It's important to consider a range of factors when selecting an algorithm since different algorithms work better with different types of data. One of these factors is the quantity of training data. On how effectively the classification system performs, a large training data set can have a substantial impact. The performance of the classifier generally increases with the size of the training data set. This isn't always the ... Read More 
Updated on 25-Apr-2023 12:11:45
In every database management system, stored procedures are a crucial component. Database programming is made more effective and manageable by its ability to encapsulate intricate SQL queries and business logic into reusable code blocks. But have you ever wondered if a saved process may be called repeatedly? This blog article will examine this query and go into the technicalities of recursive stored procedures. What is Recursion? Recursion is a programming method where a function or process invokes itself either directly or indirectly. Problems that may be divided into smaller, identical sub-problems are frequently solved using this method. Programmers can develop ... Read More 
Updated on 25-Apr-2023 11:40:59
In order to predict future values using the data at hand, time series analysis frequently employs Autoregressive Integrated Moving Average (ARIMA) models. These models use the moving average and autoregressive coefficients to represent the link between past and future data. For the model to be trustworthy and accurate, it is crucial to comprehend the criteria for these coefficients. This blog article will look at the requirement for the ARIMA model coefficients and their importance. What are ARIMA Models? ARIMA models are statistical time series data analysis models. They have three components: autoregressive (AR), integrated (I), and moving average (MA). The ... Read More 
Updated on 25-Apr-2023 11:36:35
Re-sampling is a statistical technique for gathering more data samples from which inferences about the population or the process by which the initial data were produced can be made. These methods are widely used in data analysis when it is necessary to estimate a population parameter from the given data or when there are few accessible data points. Resampling approaches typically use techniques like bootstrapping, jackknifing, and permutation testing to estimate standard errors, confidence intervals, and p-values. Analyzing and interpreting data is one of a data scientist's most crucial responsibilities. The supplied data, however, isn't always sufficiently representative, which might ... Read More 
Updated on 13-Apr-2023 17:35:16
Introduction Two well-liked regularization methods for linear regression models are ridge and lasso regression. They help to solve the overfitting issue, which arises when a model is overly complicated and fits the training data too well, leading to worse performance on fresh data. Ridge regression reduces the size of the coefficients and prevents overfitting by introducing a penalty element to the cost function of linear regression. The squared coefficient total is directly proportional to this penalty component. Adversely, a penalty term is added in lasso regression that is proportionate to the total of the absolute values of the coefficients. This ... Read More 
Updated on 13-Apr-2023 17:26:01
Introduction Based on Bayes' theorem, the naive Bayes algorithm is a probabilistic classification technique. It is predicated on the idea that a feature's presence in a class is unrelated to the presence of other features. Applications for this technique include text categorization, sentiment analysis, spam filtering, and picture recognition, among many others. A key concept in probability theory, the Bayes theorem provides a method for calculating the likelihood of an event given the chance of related events. Conditional probability, or the possibility of an event happening in the presence of another occurrence, serves as the theoretical foundation. Prior, likelihood and ... Read More Advertisements