Python Program for Boolean Logical Operations

Vani Nalliappan
Updated on 24-Feb-2021 09:22:02

167 Views

Assume you have a series and the result for Boolean operations, And operation is: 0    True 1    True 2    False dtype: bool Or operation is: 0    True 1    True 2    True dtype: bool Xor operation is: 0    False 1    False 2    True dtype: boolSolutionTo solve this, we will follow the below approach.Define a SeriesCreate a series with boolean and nan valuesPerform boolean True against bitwise & operation to each element in the series defined below, series_and = pd.Series([True, np.nan, False], dtype="bool") & TruePerform boolean True against bitwise | operation ... Read More

Transpose Index and Columns in a Given DataFrame Using Python

Vani Nalliappan
Updated on 24-Feb-2021 09:19:46

321 Views

Input −Assume you have a DataFrame, and the result for transpose of index and columns are, Transposed DataFrame is   0 1 0 1 4 1 2 5 2 3 6Solution 1Define a DataFrameSet nested list comprehension to iterate each element in the two-dimensional list data and store it in result.result = [[data[i][j] for i in range(len(data))] for j in range(len(data[0]))Convert the result to DataFrame, df2 = pd.DataFrame(result)ExampleLet us see the complete implementation to get a better understanding −import pandas as pd data = [[1, 2, 3], [4, 5, 6]] df = pd.DataFrame(data) print("Original DataFrame is", df) result = [[data[i][j] ... Read More

Calculate Default Float Quantile Value in Python

Vani Nalliappan
Updated on 24-Feb-2021 09:11:38

132 Views

Input −Assume you have a series and default float quantilevalue is 3.0SolutionTo solve this, we will follow the steps given below −Define a SeriesAssign quantile default value .5 to the series and calculate the result. It is defined below,data.quantile(.5) ExampleLet us see the complete implementation to get a better understanding −import pandas as pd l = [10,20,30,40,50] data = pd.Series(l) print(data.quantile(.5))Output30.0

Count Records Based on Designation in a DataFrame Using Python

Vani Nalliappan
Updated on 24-Feb-2021 09:10:56

158 Views

Input −Assume, we have a DataFrame and group the records based on the designation is −Designation architect    1 programmer   2 scientist    2SolutionTo solve this, we will follow the below approaches.Define a DataFrameApply groupby method for Designation column and calculate the count as defined below,df.groupby(['Designation']).count()ExampleLet us see the following implementation to get a better understanding.import pandas as pd data = { 'Id':[1,2,3,4,5],          'Designation': ['architect','scientist','programmer','scientist','programmer']} df = pd.DataFrame(data) print("DataFrame is",df) print("groupby based on designation:") print(df.groupby(['Designation']).count())OutputDesignation architect    1 programmer   2 scientist    2

Store City and State Names Starting with K in CSV using Python

Vani Nalliappan
Updated on 24-Feb-2021 09:07:57

705 Views

Input −Assume, we have DataFrame with City and State columns and find the city, state name startswith ‘k’ and store into another CSV file as shown below −City, State Kochi, KeralaSolutionTo solve this, we will follow the steps given below.Define a DataFrameCheck the city starts with ‘k’ as defined below, df[df['City'].str.startswith('K') & df['State'].str.startswith('K')] Finally, store the data in the ‘CSV’ file as below, df1.to_csv(‘test.csv’)ExampleLet us see the following implementation to get a better understanding.import pandas as pd import random as r data = { 'City': ['Chennai', 'Kochi', 'Kolkata'], 'State': ['Tamilnad', 'Kerala', 'WestBengal']} df = pd.DataFrame(data) print("DataFrame is", df) df1 = ... Read More

Select Random Row from DataFrame in Python

Vani Nalliappan
Updated on 24-Feb-2021 09:05:45

453 Views

Input −Assume, sample DataFrame is,  Id Name 0 1 Adam 1 2 Michael 2 3 David 3 4 Jack 4 5 PeterOutputput −Random row is   Id    5 Name PeterSolutionTo solve this, we will follow the below approaches.Define a DataFrameCalculate the number of rows using df.shape[0] and assign to rows variable.set random_row value from randrange method as shown below.random_row = r.randrange(rows)Apply random_row inside iloc slicing to generate any random row in a DataFrame. It is defined below, df.iloc[random_row, :]ExampleLet us see the following implementation to get a better understanding.import pandas as pd import random as r data = { ... Read More

Sort DataFrame by Name Column in Descending Order using Python

Vani Nalliappan
Updated on 24-Feb-2021 07:21:58

655 Views

Input −Assume, sample DataFrame is,   Id Name 0 1 Adam 1 2 Michael 2 3 David 3 4 Jack 4 5 PeterOutput −After, sorting the elements in descending order as,   Id Name 4 5 Peter 1 2 Michael 3 4 Jack 2 3 David 0 1 AdamSolutionTo solve this, we will follow the below approaches.Define a DataFrameApply DataFrame sort_values method based on Name column and add argument ascending=False to show the data in descending order. It is defined below, df.sort_values(by='Name', ascending=False)ExampleLet us see the following implementation to get a better understanding.import pandas as pd data = {'Id': [1, ... Read More

Calculate Mean Product of DataFrame Values in Python

Vani Nalliappan
Updated on 24-Feb-2021 07:19:56

616 Views

Input −Assume, sample DataFrame is,  Id Age  salary 0 1 27   40000 1 2 22   25000 2 3 25   40000 3 4 23   35000 4 5 24   30000 5 6 32   30000 6 7 30   50000 7 8 28   20000 8 9 29   32000 9 10 27  23000Output −Result for mean and product of given slicing rows are, mean is Age          23.333333 salary    33333.333333 product is Age                12650 salary    35000000000000SolutionTo solve this, we will follow the below approaches.Define ... Read More

Count Ages Between 20 to 30 in a DataFrame using Python

Vani Nalliappan
Updated on 24-Feb-2021 07:15:41

1K+ Views

Input −Assume, you have a DataFrame, Id Age 0 1 21 1 2 23 2 3 32 3 4 35 4 5 18Output −Total number of age between 20 to 30 is 2.SolutionTo solve this, we will follow the below approaches.Define a DataFrameSet the DataFrame Age column between 20,30. Store it in result DataFrame. It is defined below,df[df['Age'].between(20,30)]Finally, calculate the length of the result.ExampleLet us see the following implementation to get a better understanding.import pandas as pd data = {'Id':[1,2,3,4,5],'Age':[21,23,32,35,18]} df = pd.DataFrame(data) print(df) print("Count the age between 20 to 30") result = df[df['Age'].between(20,30)] print(len(result))Output Id Age 0 1 21 1 2 23 2 3 32 3 4 35 4 5 18 Count the age between 20 to 30 2

Print A-Grade Students Names from DataFrame in Python

Vani Nalliappan
Updated on 24-Feb-2021 07:12:02

667 Views

Input −Assume, you have DataFrame,  Id  Name Grade 0 1 stud1   A 1 2 stud2   B 2 3 stud3   C 3 4 stud4   A 4 5 stud5   AOutput −And the result for ‘A’ grade students name, 0    stud1 3    stud4 4    stud5SolutionTo solve this, we will follow the below approaches.Define a DataFrameCompare the value to the DataFramedf[df['Grade']=='A']Store the result in another DataFrame and fetch Name.ExampleLet us see the following implementation to get a better understanding.import pandas as pd data = [[1, 'stud1', 'A'], [2, 'stud2', 'B'], [3, 'stud3', 'C'], [4, 'stud4', 'A'], ... Read More

Advertisements