Calculate Percentage Change Between ID and Age Columns in Python

Vani Nalliappan
Updated on 25-Feb-2021 05:55:54

398 Views

Assume, you have dataframe and the result for percentage change between Id and Age columns top 2 and bottom 2 valueId and Age-top 2 values    Id Age 0 NaN NaN 1 1.0 0.0 Id and Age-bottom 2 values       Id      Age 3 0.000000 -0.071429 4 0.666667 0.000000SolutionTo solve this, we will follow the steps given below −Define a dataframeApply df[[‘Id’, ’Age’]].pct_change() inside slicing [0:2]df[['Id', 'Age']].pct_change()[0:2]Apply df[[‘Id’, ’Age’]].pct_change() inside slicing [-2:]df[['Id', 'Age']].pct_change()[0:2]ExampleLet’s check the following code to get a better understanding −import pandas as pd df = pd.DataFrame({"Id":[1, 2, 3, None, 5],         ... Read More

Perform Table-wise Pipe Function in a DataFrame using Python

Vani Nalliappan
Updated on 25-Feb-2021 05:48:54

216 Views

Assume, you have a dataframe and the result for table-wise function is, Table wise function:    Id  Mark 0  6.0 85.0 1  7.0 95.0 2  8.0 75.0 3  9.0 90.0 4 10.0 95.0SolutionTo solve this, we will follow the steps given below −Define a dataframeCreate a user-defined function avg with two arguments and return the result as (a+b/2). It is defined below, def avg(a, b):    return (a+b/2)Apply pipe() function to perform table-wise function inside first value as avg() and the second argument as 10 to calculate the avg of all the dataframe values.df.pipe(avg, 10)ExampleLet’s check the following code to ... Read More

Trim Minimum and Maximum Threshold Value in a DataFrame using Python

Vani Nalliappan
Updated on 25-Feb-2021 05:46:06

455 Views

Assume, you have a dataframe and the result for trim of minimum and the maximum threshold value, minimum threshold:    Column1 Column2 0    30    30 1    34    30 2    56    30 3    78    50 4    30    90 maximum threshold:    Column1 Column2 0    12    23 1    34    30 2    50    25 3    50    50 4    28    50 clipped dataframe is:    Column1 Column2 0    30    30 1    34    30 2    50    30 3   ... Read More

Quantify the Shape of a Distribution in a DataFrame using Python

Vani Nalliappan
Updated on 25-Feb-2021 05:44:50

321 Views

Assume, you have a dataframe and the result for quantify shape of a distribution is, kurtosis is: Column1    -1.526243 Column2     1.948382 dtype: float64 asymmetry distribution - skewness is: Column1    -0.280389 Column2     1.309355 dtype: float64SolutionTo solve this, we will follow the steps given below −Define a dataframeApply df.kurt(axis=0) to calculate the shape of distribution, df.kurt(axis=0)Apply df.skew(axis=0) to calculate unbiased skew over axis-0 to find asymmetry distribution, df.skew(axis=0)ExampleLet’s see the following code to get a better understanding −import pandas as pd data = {"Column1":[12, 34, 56, 78, 90],          "Column2":[23, 30, 45, ... Read More

Find Mean Absolute Deviation of Rows and Columns in a DataFrame using Python

Vani Nalliappan
Updated on 25-Feb-2021 05:42:20

527 Views

SolutionAssume you have a dataframe and mean absolute deviation of rows and column is, mad of columns: Column1    0.938776 Column2    0.600000 dtype: float64 mad of rows: 0    0.500 1    0.900 2    0.650 3    0.900 4    0.750 5    0.575 6    1.325 dtype: float64To solve this, we will follow the steps given below −Define a dataframeCalculate mean absolute deviation of row as, df.mad()Calculate mean absolute deviation of row as, df.mad(axis=1)ExampleLet’s see the following code to get a better understanding −import pandas as pd data = {"Column1":[6, 5.3, 5.9, 7.8, 7.6, 7.45, 7.75], ... Read More

Find the Average of First Row in a Panel Using Python

Vani Nalliappan
Updated on 25-Feb-2021 05:37:27

296 Views

Assume, you have Panel and the average of the first row is, Average of first row is: Column1    0.274124 dtype: float64SolutionTo solve this, we will follow the steps given below −Set data value as dictionary key is ‘Column1’ with value as pd.DataFrame(np.random.randn(5, 3))data = {'Column1' : pd.DataFrame(np.random.randn(5, 3))}Assign data to Panel and save it as pp = pd.Panel(data)Print the column using dict key Column1print(p['Column1'])Calculate theAverage of first row using, major_xs(0) ,p.major_xs(0).mean()ExampleLet’s see the following code to get a better understanding −import pandas as pd import numpy as np data = {'Column1' : pd.DataFrame(np.random.randn(5, 3))} p = pd.Panel(data) print("Panel values:") ... Read More

Find Minimum Rank of a Column in DataFrame using Python

Vani Nalliappan
Updated on 25-Feb-2021 05:33:26

362 Views

SolutionAssume, you have a dataframe and minimum rank of a particular column,  Id Name    Age    Rank 0 1 Adam    12    1.0 1 2 David   13    3.0 2 3 Michael 14    5.0 3 4 Peter   12    1.0 4 5 William 13    3.0To solve this, we will follow the steps given below −Define a dataframe.Assign df[‘Age’] column inside rank function to calculate the minimum rank for axis 0 is, df["Age"].rank(axis=0, method ='min', ascending=True)ExampleLet’s see the following code to get a better understanding −import pandas as pd data = {'Id': [1, 2, 3, ... Read More

Create a Panel from Dictionary of DataFrame in Python

Vani Nalliappan
Updated on 25-Feb-2021 05:32:24

210 Views

The result for a maximum value of the first column in panel ismaximum value of first column is ; Column1    1.377292SolutionTo solve this, we will follow the below approach −Set data value as dictionary key is ‘Column1’ with value as pd.DataFrame(np.random.randn(5, 3))data = {'Column1' : pd.DataFrame(np.random.randn(5, 3))}Assign data to Panel and save it as pp = pd.Panel(data)Print the column using dict key Column1print(p['Column1'])Calculate the maximum value of first column using, minor_xs(0) ,p.minor_xs(0).max()ExampleLet’s see the following code to get a better understanding −import pandas as pd import numpy as np data = {'Column1' : pd.DataFrame(np.random.randn(5, 3))} p = pd.Panel(data) print("Panel ... Read More

Shift DataFrame Index by Two Periods in Python

Vani Nalliappan
Updated on 25-Feb-2021 05:29:56

175 Views

Assume, you have a dataframe and the shift index by two periods in positive and negative direction is, shift the index by three periods in positive direction                      Id Age 2020-01-01 00:00:00 NaN NaN 2020-01-01 12:00:00 NaN NaN 2020-01-02 00:00:00 1.0 10.0 2020-01-02 12:00:00 2.0 12.0 2020-01-03 00:00:00 3.0 14.0 shift the index by three periods in negative direction                      Id Age 2020-01-01 00:00:00 3.0 14.0 2020-01-01 12:00:00 4.0 11.0 2020-01-02 00:00:00 5.0 13.0 2020-01-02 12:00:00 NaN NaN 2020-01-03 00:00:00 NaN NaNSolutionTo ... Read More

Remove First Duplicate Rows in a DataFrame using Python

Vani Nalliappan
Updated on 25-Feb-2021 05:28:07

309 Views

Assume, you have a dataframe and the result for removing first duplicate rows are,     Id Age 0    1 12 3    4 13 4    5 14 5    6 12 6    2 13 7    7 16 8    3 14 9    9 15 10  10 14SolutionTo solve this, we will follow the steps given below −Define a dataframeApply drop_duplicates function inside Id and Age column then assign keep initial value as ‘last’.df.drop_duplicates(subset=['Id', 'Age'], keep='last')Store the result inside same dataframe and print itExampleLet’s see the below implementation to get a better understanding −import pandas ... Read More

Advertisements