- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
A pole $ 6 \mathrm{~m} $ high casts a shadow $ 2 \sqrt{3} \mathrm{~m} $ long on the ground, then the Sun's elevation is
(A) $ 60^{\circ} $
(B) $ 45^{\circ} $
(C) $ 30^{\circ} $
(D) $ 90^{\circ} $
Given:
A pole $6\ m$ high casts a shadow $2\sqrt{3}\ m$ long on the ground.
To do:
We have to find the sun’s elevation.
Solution:

Let height $=6\ m$
length of shadow $=2\sqrt{3}\ m$
$\theta$ is angle of elevation
$tan\theta=\frac{height}{shadow-length}$
$=\frac{6}{2\sqrt{3}}$
$=\sqrt{3}$
$=tan60^o$
$\therefore \theta=60^o$
Thus, angle of elevation is $60^o$
- Related Articles
- Choose the correct option and justify your choice:(i) \( \frac{2 \tan 30^{\circ}}{1+\tan ^{2} 30^{\circ}}= \)(A) \( \sin 60^{\circ} \) (B) \( \cos 60^{\circ} \) (C) \( \tan 60^{\circ} \) (D) \( \sin 30^{\circ} \)(ii) \( \frac{1-\tan ^{2} 45^{\circ}}{1+\tan ^{2} 45^{\circ}}= \)(A) \( \tan 90^{\circ} \) (B) 1 (C) \( \sin 45^{\circ} \) (D) 0(iii) \( \sin 2 \mathrm{~A}=2 \sin \mathrm{A} \) is true when \( \mathrm{A}= \)(A) \( 0^{\circ} \) (B) \( 30^{\circ} \) (C) \( 45^{\circ} \) (D) \( 60^{\circ} \)(iv) \( \frac{2 \tan 30^{\circ}}{1-\tan ^{2} 30^{\circ}}= \)(A) \( \cos 60^{\circ} \) (B) \( \sin 60^{\circ} \) (C) \( \tan 60^{\circ} \) (D) \( \sin 30^{\circ} \).
- If a pole $6\ m$ high casts a shadow $2\sqrt{3}\ m$ long on the ground, then find the sun’s elevation.
- Evaluate each of the following:\( \operatorname{cosec}^{3} 30^{\circ} \cos 60^{\circ} \tan ^{3} 45^{\circ} \sin ^{2} 90^{\circ} \sec ^{2} 45^{\circ} \cot 30^{\circ} \)
- Evaluate the following:(i) \( \sin 60^{\circ} \cos 30^{\circ}+\sin 30^{\circ} \cos 60^{\circ} \)(ii) \( 2 \tan ^{2} 45^{\circ}+\cos ^{2} 30^{\circ}-\sin ^{2} 60^{\circ} \)(iii) \( \frac{\cos 45^{\circ}}{\sec 30^{\circ}+\operatorname{cosec~30^{\circ }}} \)(iv) \( \frac{\sin 30^{\circ}+\tan 45^{\circ}-\operatorname{cosec} 60^{\circ}}{\sec 30^{\circ}+\cos 60^{\circ}+\cot 45^{\circ}} \)(v) \( \frac{5 \cos ^{2} 60^{\circ}+4 \sec ^{2} 30^{\circ}-\tan ^{2} 45^{\circ}}{\sin ^{2} 30^{\circ}+\cos ^{2} 30^{\circ}} \).
- Evaluate each of the following:\( \frac{\tan ^{2} 60^{\circ}+4 \cos ^{2} 45^{\circ}+3 \sec ^{2} 30^{\circ}+5 \cos ^{2} 90^{\circ}}{\operatorname{cosec} 30^{\circ}+\sec 60^{\circ}-\cot ^{2} 30^{\circ}} \)
- Construct with ruler and compasses, angles of following measures:(a) \( 60^{\circ} \)(b) \( 30^{\circ} \)(c) \( 90^{\circ} \)(d) \( 120^{\circ} \)(e) \( 45^{\circ} \)(f) \( 135^{\circ} \)
- Evaluate each of the following:\( \frac{\sin 30^{\circ}}{\sin 45^{\circ}}+\frac{\tan 45^{\circ}}{\sec 60^{\circ}}-\frac{\sin 60^{\circ}}{\cot 45^{\circ}}-\frac{\cos 30^{\circ}}{\sin 90^{\circ}} \)
- Evaluate each of the following:\( \sin ^{2} 30^{\circ}+\sin ^{2} 45^{\circ}+\sin ^{2} 60^{\circ}+\sin ^{2} 90^{\circ} \)
- Evaluate each of the following:\( \cos ^{2} 30^{\circ}+\cos ^{2} 45^{\circ}+\cos ^{2} 60^{\circ}+\cos ^{2} 90^{\circ} \)
- If a tower $30\ m$ high, casts a shadow $10\sqrt{3} \ m$ long on the ground, then what is the angle of elevation of the sun ?
- If \( \sin x=\frac{6 \sin 30^{\circ}-8 \cos 60^{\circ}+2 \tan 45^{\circ}}{2\left(\sin ^{2} 30^{\circ}+\cos ^{2} 60^{\circ}\right)} \), then \( x \) is equal to
- Evaluate each of the following:\( 4\left(\sin ^{4} 30^{\circ}+\cos ^{2} 60^{\circ}\right)-3\left(\cos ^{2} 45^{\circ}-\sin ^{2} 90^{\circ}\right)-\sin ^{2} 60^{\circ} \)
- Prove that \( (\sqrt{3}+1)(3-\cot 30^{\circ})=\tan^{3} 60^{\circ}-2\sin 60^{\circ} \).
- Evaluate each of the following:\( \frac{\tan 45^{\circ}}{\operatorname{cosec} 30^{\circ}}+\frac{\sec 60^{\circ}}{\cot 45^{\circ}}-\frac{5 \sin 90^{\circ}}{2 \cos 0^{\circ}} \)
- Given that \( \sin \alpha=\frac{1}{2} \) and \( \cos \beta=\frac{1}{2} \), then the value of \( (\alpha+\beta) \) is(A) \( 0^{\circ} \)(B) \( 30^{\circ} \)(C) \( 60^{\circ} \)(D) \( 90^{\circ} \)

Advertisements