- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Prove that $ (\sqrt{3}+1)(3-\cot 30^{\circ})=\tan^{3} 60^{\circ}-2\sin 60^{\circ} $.
To do:
We have to prove that \( (\sqrt{3}+1)(3-\cot 30^{\circ})=\tan^{3} 60^{\circ}-2\sin 60^{\circ} \).
Solution:
We know that,
$\cot 30^{\circ}=\sqrt3$
$\tan 60^{\circ}=\sqrt3$
$\sin 60^{\circ}=\frac{\sqrt3}{2}$
Let us consider LHS,
$(\sqrt{3}+1)(3-\cot 30^{\circ})=(\sqrt{3}+1)(3-\sqrt3)$
$=(\sqrt{3})(3)-(\sqrt3)^2+1(3)-1(\sqrt3)$
$=3\sqrt3-3+3-\sqrt3$
$=2\sqrt3$
Let us consider RHS,
$\tan^{3} 60^{\circ}-2\sin 60^{\circ}=(\sqrt3)^3-2(\frac{\sqrt3}{2})$
$=3\sqrt3-\sqrt3$
$=2\sqrt3$
LHS $=$ RHS
Hence proved.
Advertisements