# Evaluate each of the following:$\frac{\tan 45^{\circ}}{\operatorname{cosec} 30^{\circ}}+\frac{\sec 60^{\circ}}{\cot 45^{\circ}}-\frac{5 \sin 90^{\circ}}{2 \cos 0^{\circ}}$

Given:

$\frac{\tan 45^{\circ}}{\operatorname{cosec} 30^{\circ}}+\frac{\sec 60^{\circ}}{\cot 45^{\circ}}-\frac{5 \sin 90^{\circ}}{2 \cos 0^{\circ}}$

To do:

We have to evaluate $\frac{\tan 45^{\circ}}{\operatorname{cosec} 30^{\circ}}+\frac{\sec 60^{\circ}}{\cot 45^{\circ}}-\frac{5 \sin 90^{\circ}}{2 \cos 0^{\circ}}$.

Solution:

We know that,

$tan 45^{\circ}=1$

$cosec 30^{\circ}=2$

$\sec 60^{\circ}=2$

$\cot 45^{\circ}=1$

$\sin 90^{\circ}=1$

$\cos 0^{\circ}=1$

Therefore,

$\frac{\tan 45^{\circ}}{\operatorname{cosec} 30^{\circ}}+\frac{\sec 60^{\circ}}{\cot 45^{\circ}}-\frac{5 \sin 90^{\circ}}{2 \cos 0^{\circ}}=\frac{1}{2} +\frac{2}{1} -\frac{5( 1)}{2( 1)}$

$=\frac{1}{2} +2-\frac{5}{2}$

$=\frac{1+2( 2) -5}{2}$

$=\frac{-4+4}{2}$

$=0$

Hence, $\frac{\tan 45^{\circ}}{\operatorname{cosec} 30^{\circ}}+\frac{\sec 60^{\circ}}{\cot 45^{\circ}}-\frac{5 \sin 90^{\circ}}{2 \cos 0^{\circ}}=0$.

Tutorialspoint

Simply Easy Learning

Updated on: 10-Oct-2022

33 Views

##### Kickstart Your Career

Get certified by completing the course

Advertisements