# WiMAX - OFDM Basics

OFDM belongs to a family of transmission schemes called multicarrier modulation, which is based on the idea of dividing a given high-bit-rate data stream into several parallel lower bit-rate streams and modulating each stream on separate carriers, often called subcarriers or tones.

Multicarrier modulation schemes eliminate or minimize intersymbol interference (ISI) by making the symbol time large enough so that the channel-induced delays delay spread being a good measure of this in wireless channels are an insignificant (typically, < 10 percent) fraction of the symbol duration.

Therefore, in high-data-rate systems in which the symbol duration is small, being inversely proportional to the data rate splitting the data stream into many parallel streams increases the symbol duration of each stream such that the delay spread is only a small fraction of the symbol duration.

**OFDM** is a spectrally efficient version of multicarrier modulation, where the subcarriers are selected such that they are all orthogonal to one another over the symbol duration, thereby avoiding the need to have nonoverlapping subcarrier channels to eliminate intercarrier interference.

In order to completely eliminate ISI, guard intervals are used between OFDM symbols. By making the guard interval larger than the expected multipath delay spread, ISI can be completely eliminated. Adding a guard interval, however, implies power wastage and a decrease in bandwidth efficiency.