- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
What is the use of set.seed in R?
The set.seed helps to create the replicate of the random generation. If the name of the object changes that does not mean the replication will be changed but if we change the position then it will. Here, in the below example x4 in the first random generation and the x_4 in the second random generation with the same set.seed are same but x4 and x4 in both are different.
Example
set.seed(101) x1<−rnorm(50) x1
Output
[1] −0.3260365 0.5524619 −0.6749438 0.2143595 0.3107692 1.1739663 [7] 0.6187899 −0.1127343 0.9170283 −0.2232594 0.5264481 −0.7948444 [13] 1.4277555 −1.4668197 −0.2366834 −0.1933380 −0.8497547 0.0584655 [19] −0.8176704 −2.0503078 −0.1637557 0.7085221 −0.2679805 −1.4639218 [25] 0.7444358 −1.4103902 0.4670676 −0.1193201 0.4672390 0.4981356 [31] 0.8949372 0.2791520 1.0078658 −2.0731065 1.1898534 −0.7243742 [37] 0.1679838 0.9203352 −1.6716048 0.4484691 0.4824588 0.7582138 [43] −2.3193274 −0.4595048 −1.1053837 0.4029283 0.5689349 −0.7060833 [49] −0.2900906 −1.4838781
Example
x2<−rnorm(50) x2
Output
[1] −1.150255281 −0.274471162 0.577901003 −1.396902647 0.749057716 [6] −1.051186697 0.165380871 1.129809120 1.173722464 −0.427863232 [11] −0.259802108 −1.411173044 −0.641357554 0.112457509 0.422604331 [16] 0.386835291 −0.687798326 0.148902489 −0.057649748 −0.074823365 [21] 1.509897438 1.619937008 1.153158167 −0.077603595 −1.818934501 [26] −1.037444583 0.302492246 −1.277946167 0.138339048 −0.050984124 [31] 1.852147575 1.111675270 −0.511375322 −0.543881104 −1.728927284 [36] 0.470749539 0.005387122 1.348045786 0.724096713 1.552549165 [41] 1.325469832 −0.034265092 −0.361013398 −0.720165422 0.282014933 [46] −0.790525664 −0.444904551 1.364993169 0.497454338 −0.814396476
Example
x3<−rnorm(50) x3
Output
[1] 0.26806584 −0.59220831 2.13348636 1.17274867 0.74676099 −0.23050869 [7] 0.08777170 −2.18373968 −0.46663159 1.68595984 −0.56792093 −0.04674302 [13] −0.15698059 1.60224244 0.76865367 −0.77162936 −0.63068198 −0.83028060 [19] −0.59111274 0.98108541 −0.66160527 −0.77241769 −2.01847347 −0.53358542 [25] 0.43472833 −0.77116734 −0.75394082 −0.29935782 1.66396643 −1.24432984 [31] −0.78313437 0.24483056 −0.14388717 −1.60863142 0.95157997 −1.81913169 [37] 1.78367171 1.88713936 1.49071878 −0.38059952 −0.90937501 −0.33809411 [43] −1.41188352 0.21754289 0.67012617 −0.28785938 0.46930350 −0.47007143 [49] −0.23926592 −0.44746249
Example
x4<−rnorm(50) x4
Output
[1] −0.618829657 0.252963051 −0.753368175 0.732276853 −0.402586713 [6] −2.823000119 0.462973827 2.132869726 −0.270486687 0.248525349 [11] 0.038116475 0.394068950 −1.504085198 −1.586890794 −0.927118077 [16] 0.776197040 −0.780684440 −1.278567024 −0.001428128 −1.850978124 [21] 0.451505335 −0.432947055 0.713602899 0.960695470 0.381535210 [26] 1.218072798 −0.017137261 −0.038209493 1.243734395 −0.955858745 [31] 0.915425235 −0.939337976 0.112124820 0.553012619 0.531741963 [36] −0.873762389 −0.186849273 −0.213710488 −0.204011273 1.719709241 [41] 0.202033482 0.512655778 1.452400012 0.363865465 −0.875848946 [46] −0.014560733 −0.724493165 1.969370094 −0.536402427 −0.026232340
Example
set.seed(101) x1<−rnorm(50) x1
Output
[1] −0.3260365 0.5524619 −0.6749438 0.2143595 0.3107692 1.1739663 [7] 0.6187899 −0.1127343 0.9170283 −0.2232594 0.5264481 −0.7948444 [13] 1.4277555 −1.4668197 −0.2366834 −0.1933380 −0.8497547 0.0584655 [19] −0.8176704 −2.0503078 −0.1637557 0.7085221 −0.2679805 −1.4639218 [25] 0.7444358 −1.4103902 0.4670676 −0.1193201 0.4672390 0.4981356 [31] 0.8949372 0.2791520 1.0078658 −2.0731065 1.1898534 −0.7243742 [37] 0.1679838 0.9203352 −1.6716048 0.4484691 0.4824588 0.7582138 [43] −2.3193274 −0.4595048 −1.1053837 0.4029283 0.5689349 −0.7060833 [49] −0.2900906 −1.4838781
Example
x2<−rnorm(50) x2
Output
[1] −1.150255281 −0.274471162 0.577901003 −1.396902647 0.749057716 [6] −1.051186697 0.165380871 1.129809120 1.173722464 −0.427863232 [11] −0.259802108 −1.411173044 −0.641357554 0.112457509 0.422604331 [16] 0.386835291 −0.687798326 0.148902489 −0.057649748 −0.074823365 [21] 1.509897438 1.619937008 1.153158167 −0.077603595 −1.818934501 [26] −1.037444583 0.302492246 −1.277946167 0.138339048 −0.050984124 [31] 1.852147575 1.111675270 −0.511375322 −0.543881104 −1.728927284 [36] 0.470749539 0.005387122 1.348045786 0.724096713 1.552549165 [41] 1.325469832 −0.034265092 −0.361013398 −0.720165422 0.282014933 [46] −0.790525664 −0.444904551 1.364993169 0.497454338 −0.814396476
Example
x3<−rnorm(50) x3
Output
[1] 0.26806584 −0.59220831 2.13348636 1.17274867 0.74676099 −0.23050869 [7] 0.08777170 −2.18373968 −0.46663159 1.68595984 −0.56792093 −0.04674302 [13] −0.15698059 1.60224244 0.76865367 −0.77162936 −0.63068198 −0.83028060 [19] −0.59111274 0.98108541 −0.66160527 −0.77241769 −2.01847347 −0.53358542 [25] 0.43472833 −0.77116734 −0.75394082 −0.29935782 1.66396643 −1.24432984 [31] −0.78313437 0.24483056 −0.14388717 −1.60863142 0.95157997 −1.81913169 [37] 1.78367171 1.88713936 1.49071878 −0.38059952 −0.90937501 −0.33809411 [43] −1.41188352 0.21754289 0.67012617 −0.28785938 0.46930350 −0.47007143 [49] −0.23926592 −0.44746249
Example
x_4<−rnorm(50) x_4
Output
[1] −0.618829657 0.252963051 −0.753368175 0.732276853 −0.402586713 [6] −2.823000119 0.462973827 2.132869726 −0.270486687 0.248525349 [11] 0.038116475 0.394068950 −1.504085198 −1.586890794 −0.927118077 [16] 0.776197040 −0.780684440 −1.278567024 −0.001428128 −1.850978124 [21] 0.451505335 −0.432947055 0.713602899 0.960695470 0.381535210 [26] 1.218072798 −0.017137261 −0.038209493 1.243734395 −0.955858745 [31] 0.915425235 −0.939337976 0.112124820 0.553012619 0.531741963 [36] −0.873762389 −0.186849273 −0.213710488 −0.204011273 1.719709241 [41] 0.202033482 0.512655778 1.452400012 0.363865465 −0.875848946 [46] −0.014560733 −0.724493165 1.969370094 −0.536402427 −0.026232340
Example
x4<−rnorm(50) x4
Output
[1] −0.16403235 −1.38327506 0.42351126 −0.79048891 1.20992485 0.89451677 [7] −0.10119854 0.29712257 0.19729772 −0.15698374 1.53657101 −2.16766968 [13] 0.59844815 0.04311236 1.29502719 0.70630294 0.34554508 −0.07989665 [19] 0.45480755 1.27625237 1.26483765 0.26925353 −0.12054409 0.79527135 [25] −0.51402764 −0.40659347 1.21971898 0.08371137 0.58990215 −0.51741928 [31] 0.76946349 0.80196974 −0.69686014 1.17785318 0.58584526 −0.46689388 [37] 0.38564964 −0.53460558 1.05666840 −0.20609327 0.60701224 −0.54806386 [43] −2.09997633 0.25081276 −0.05494528 −0.65972781 −1.45585738 0.02372943 [49] 0.54790809 −0.80890140
- Related Articles
- Why we should use set.seed in R?
- What is the use of tilde operator (~) in R?
- What is the use of pheatmap function in R?
- What is the use of Custom Extractor in SAP R/3 system?
- What is the use of type = "h" in base R for plotting a graph?
- What is the use of "is" keyword in C#?
- What is the use of sinon.js?
- What is the use of %n in printf()?
- What is the use of Map in JavaScript?
- What is the use of Atomics in JavaScript?
- What is the use of ini_set() in PHP?
- What is the use of cin.ignore() in C++?
- What is the use of OBJECT.assign() in javascript?
- What is the use of window.location in javascript?
- What is the use of sentry in javascript?

Advertisements