- Related Questions & Answers
- Height-Biased Leftist Trees in Data Structure
- Splay trees in Data Structure
- Solid Trees in Data Structure
- Range Trees in Data Structure
- BSP Trees in Data Structure
- Huffman Trees in Data Structure
- R-trees in Data Structure
- Interval Trees in Data Structure
- Segment Trees in Data Structure
- Tournament Trees, Winner Trees and Loser Trees in Data Structure
- Optimal Lopsided Trees in Data Structure
- Threaded Binary Trees in Data Structure
- Red-Black Trees in Data Structure
- Comparison of Search Trees in Data Structure
- Dynamic Finger Search Trees in Data Structure

- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who

Here we will see another variation of Leftist Tree. Here we will consider the number of nodes in a subtree, rather than the length of a shortest path for root to external node. Here we will define the weight w(x) of node x, to be the number of internal nodes in the subtree with root x. If x is an external node, then the weight is 0. If x is internal node, then the weight is one more than the sum of weights of its children.

Here is an example of Weight Biased Leftist Tree (WBLT) −

Suppose the Binary tree is like this −

If we calculate w(x) values for each node, it will be like this −

Now the definition of WBLT is like −

A binary tree is called Weight Balanced Leftist Tree if and only if, at every internal node the w(x) of left child is greater than or equal to the w(x) of the right child. A max (min) WBLT is a max (min) tree that is also a WBLT.

Advertisements