# Replace $\square$ in each of the following by the correct number:(a) $\frac{2}{7}=\frac{8}{\square}$(b) $\frac{5}{8}=\frac{10}{\square}$(c) $\frac{3}{5}=\frac{\square}{20}$(d) $\frac{45}{60}=\frac{15}{\square}$(e) $\frac{18}{24}=\frac{\square}{4}$

#### Complete Python Prime Pack

9 Courses     2 eBooks

#### Artificial Intelligence & Machine Learning Prime Pack

6 Courses     1 eBooks

#### Java Prime Pack

9 Courses     2 eBooks

To do:

We have to replace $\square$ by the correct numbers.

Solution:

(a) Let $x$ be the number in the square.

Therefore,

$\frac{2}{7}=\frac{8}{x}$

On cross multiplication, we get,

$2\times x=7\times8$

$x=\frac{7\times8}{2}$

$x=7\times4$

$x=28$

The required number is 28.

(b) Let $x$ be the number in the square.

Therefore,

$\frac{5}{8}=\frac{10}{x}$

On cross multiplication, we get,

$5\times x=10\times8$

$x=\frac{10\times8}{5}$

$x=2\times8$

$x=16$

The required number is 16.

(c) Let $x$ be the number in the square.

Therefore,

$\frac{3}{5}=\frac{x}{20}$

On cross multiplication, we get,

$3\times 20=x\times5$

$x=\frac{3\times20}{5}$

$x=3\times4$

$x=12$

The required number is 12.

(d) Let $x$ be the number in the square.

Therefore,

$\frac{45}{60}=\frac{15}{x}$

On cross multiplication, we get,

$45\times x=15\times60$

$x=\frac{15\times60}{45}$

$x=\frac{60}{3}$

$x=20$

The required number is 20.

(e) Let $x$ be the number in the square.

Therefore,

$\frac{18}{24}=\frac{x}{4}$

On cross multiplication, we get,

$18\times 4=x \times24$

$x=\frac{18\times4}{24}$

$x=\frac{18}{6}$

$x=3$

The required number is 3.

Updated on 10-Oct-2022 13:32:55