- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
How quickly can you do this? Fill appropriate sign. ( '<', '=', '>')
(a) $ \frac{1}{2} \square \frac{1}{5} $
(b) $ \frac{2}{4} \square \frac{3}{6} $
(c) $ \frac{3}{5} \square \frac{2}{3} $
(d) $ \frac{3}{4} \square \frac{2}{8} $
(e) $ \frac{3}{5} \square \frac{6}{5} $
(f) $ \frac{7}{9} \square \frac{3}{9} $
(g) $ \frac{1}{4} \square \frac{2}{8} $
(h) $ \frac{6}{10} \square \frac{4}{5} $
(i) $ \frac{3}{4} \square \frac{7}{8} $
(j) $ \frac{6}{10} \square \frac{3}{5} $
(k) $ \frac{5}{7} \square \frac{15}{21} $
To do:
We have to write '$<$' or ' \( > \) ', '$=$' between the given pairs of fractions.
Solution:
(a) \( \frac{1}{2} \square \frac{1}{5} \)
Here, the numerators are same.
Therefore, the fraction having lesser denominator will be lesser.
This implies,
$\frac{1}{2} > \frac{1}{5}$
(b) $\frac{2}{4}=\frac{1\times2}{2\times2}$
$=\frac{1}{2}$
$\frac{3}{6}=\frac{1\times3}{2\times3}$
$=\frac{1}{2}$
This implies,
$\frac{2}{4} = \frac{3}{6}$
(c) LCM of denominators 5 and 3 is 15.
This implies,
$\frac{3}{5}\times\frac{3}{3}=\frac{3\times3}{5\times3}$
$=\frac{9}{15}$
$\frac{2}{3}\times\frac{5}{5}=\frac{2\times5}{3\times5}$
$=\frac{10}{15}$
Therefore,
$\frac{9}{15}<\frac{10}{15}$
This implies,
$\frac{3}{5} < \frac{2}{3}$
(d) $\frac{2}{8}=\frac{1\times2}{4\times2}$
$=\frac{1}{4}$
$3>1$
This implies,
$\frac{3}{4} > \frac{1}{4}$
Therefore,
$\frac{3}{4} > \frac{2}{8}$
(e) Here, the denominators are same.
Therefore, the fraction having greater numerator is greater.
This implies,
$\frac{6}{5} > \frac{3}{5}$
Therefore,
$\frac{3}{5} < \frac{6}{5}$
(f) Here, the denominators are same.
Therefore, the fraction having greater numerator is greater.
This implies,
$\frac{7}{9} > \frac{3}{9}$
(g) $\frac{2}{8}=\frac{2\times1}{2\times4}$
$=\frac{1}{4}$
Therefore,
$\frac{1}{4} = \frac{2}{8}$
(h) $\frac{6}{10}=\frac{2\times3}{2\times5}$
$=\frac{3}{5}$
Now, the denominator of $\frac{3}{5}$ and $\frac{4}{5}$ are same.
$4>3$
This implies,
$\frac{4}{5} > \frac{3}{5}$
Therefore,
$\frac{6}{10} < \frac{4}{5}$
(i) We can write $\frac{3}{4}$ as, $\frac{3}{4}=\frac{3\times2}{4\times2}$
$=\frac{6}{8}$
Now, the denominators of $\frac{6}{8}$ and $\frac{7}{8}$ are same.
$7>6$
This implies,
$\frac{7}{8} > \frac{6}{8}$
Therefore,
$\frac{3}{4} < \frac{7}{8}$
(j) $\frac{6}{10}=\frac{3\times2}{5\times2}$
$=\frac{3}{5}$
Here, numerators are same.
Therefore,
$\frac{6}{10} = \frac{3}{5}$
(k) $\frac{15}{21}=\frac{3\times5}{3\times7}$
$=\frac{5}{7}$
Here, numerators are same.
Therefore,
$\frac{5}{7} = \frac{15}{21}$
- Related Articles
- Compare the fractions and put an appropriate sign.(a) \( \frac{3}{6} \square \frac{5}{6} \)(b) \( \frac{1}{7} \square \frac{1}{4} \)(c) \( \frac{4}{5} \square \frac{5}{5} \)(d) \( \frac{3}{5} \square \frac{3}{7} \)
- Look at the figures and write 's' or ' \( > \) ', '- ' between the given pairs of fractions.(a) \( \frac{1}{6} \square \frac{1}{3} \)(b) \( \frac{3}{4} \square \frac{2}{6} \)(c) \( \frac{2}{3} \square \frac{2}{4} \)(d) \( \frac{6}{6} \square \frac{3}{3} \)(e) \( \frac{5}{6} \square \frac{5}{5} \)"
- Fill in the missing fractions.(a) \( \frac{7}{10}-\square=\frac{3}{10} \)(b) \( \square-\frac{3}{21}=\frac{5}{21} \)(c) \( \square-\frac{3}{6}=\frac{3}{6} \)(d) \( \square+\frac{5}{27}=\frac{12}{27} \)
- Solve(a) \( \frac{2}{3}+\frac{1}{7} \)(b) \( \frac{3}{10}+\frac{7}{15} \)(c) \( \frac{4}{9}+\frac{2}{7} \)(d) \( \frac{5}{7}+\frac{1}{3} \)(e) \( \frac{2}{5}+\frac{1}{6} \)(f) \( \frac{4}{5}+\frac{2}{3} \)(g) \( \frac{3}{4}-\frac{1}{3} \)(h) \( \frac{5}{6}-\frac{1}{3} \)(i) \( \frac{2}{3}+\frac{3}{4}+\frac{1}{2} \)(j) \( \frac{1}{2}+\frac{1}{3}+\frac{1}{6} \)(k) \( 1 \frac{1}{3}+3 \frac{2}{3} \)(l) \( 4 \frac{2}{3}+3 \frac{1}{4} \)(m) \( \frac{16}{5}-\frac{7}{5} \)(n) \( \frac{4}{3}-\frac{1}{2} \)
- Fill in the boxes: (a) \( \square-\frac{5}{8}=\frac{1}{4} \)(b) \( \square-\frac{1}{5}=\frac{1}{2} \)(c) \( \frac{1}{2}-\square=\frac{1}{6} \)
- Simplify:(i) \( \frac{-3}{2}+\frac{5}{4}-\frac{7}{4} \)(ii) \( \frac{5}{3}-\frac{7}{6}+\frac{-2}{3} \)(iii) \( \frac{5}{4}-\frac{7}{6}-\frac{-2}{3} \)(iv) \( \frac{-2}{5}-\frac{-3}{10}-\frac{-4}{7} \)(v) \( \frac{5}{6}+\frac{-2}{5}-\frac{-2}{15} \)(vi) \( \frac{3}{8}-\frac{-2}{9}+\frac{-5}{36} \)
- Replace \( \square \) in each of the following by the correct number:(a) \( \frac{2}{7}=\frac{8}{\square} \)(b) \( \frac{5}{8}=\frac{10}{\square} \)(c) \( \frac{3}{5}=\frac{\square}{20} \)(d) \( \frac{45}{60}=\frac{15}{\square} \)(e) \( \frac{18}{24}=\frac{\square}{4} \)
- Solve:(i) $3-\frac{2}{5}$(ii) $4+\frac{7}{8}$(iii) $\frac{3}{5}+\frac{2}{7}$(iv) $\frac{9}{11}-\frac{4}{15}$(v) $\frac{7}{10}+\frac{2}{5}+\frac{3}{2}$(vi) $2\frac{2}{3}+3\frac{1}{2}$(vii) $8\frac{1}{2}-3\frac{5}{8}$
- Prove that:\( \frac{2^{\frac{1}{2}} \times 3^{\frac{1}{3}} \times 4^{\frac{1}{4}}}{10^{\frac{-1}{5}} \times 5^{\frac{3}{5}}} \p \frac{3^{\frac{4}{3}} \times 5^{\frac{-7}{5}}}{4^{\frac{-3}{5}} \times 6}=10 \)
- Take away:(i) \( \frac{6}{5} x^{2}-\frac{4}{5} x^{3}+\frac{5}{6}+\frac{3}{2} x \) from \( \frac{x^{3}}{3}-\frac{5}{2} x^{2}+ \) \( \frac{3}{5} x+\frac{1}{4} \)(ii) \( \frac{5 a^{2}}{2}+\frac{3 a^{3}}{2}+\frac{a}{3}-\frac{6}{5} \) from \( \frac{1}{3} a^{3}-\frac{3}{4} a^{2}- \) \( \frac{5}{2} \)(iii) \( \frac{7}{4} x^{3}+\frac{3}{5} x^{2}+\frac{1}{2} x+\frac{9}{2} \) from \( \frac{7}{2}-\frac{x}{3}- \) \( \frac{x^{2}}{5} \)(iv) \( \frac{y^{3}}{3}+\frac{7}{3} y^{2}+\frac{1}{2} y+\frac{1}{2} \) from \( \frac{1}{3}-\frac{5}{3} y^{2} \)(v) \( \frac{2}{3} a c-\frac{5}{7} a b+\frac{2}{3} b c \) from \( \frac{3}{2} a b-\frac{7}{4} a c- \) \( \frac{5}{6} b c \)
- Re-arrange suitably and find the sum in each of the following:(i) \( \frac{11}{12}+\frac{-17}{3}+\frac{11}{2}+\frac{-25}{2} \)(ii) \( \frac{-6}{7}+\frac{-5}{6}+\frac{-4}{9}+\frac{-15}{7} \)(iii) \( \frac{3}{5}+\frac{7}{3}+\frac{9}{5}+\frac{-13}{15}+\frac{-7}{3} \)(iv) \( \frac{4}{13}+\frac{-5}{8}+\frac{-8}{13}+\frac{9}{13} \)(v) \( \frac{2}{3}+\frac{-4}{5}+\frac{1}{3}+\frac{2}{5} \)(vi) \( \frac{1}{8}+\frac{5}{12}+\frac{2}{7}+\frac{7}{12}+\frac{9}{7}+\frac{-5}{16} \)
- Simplify each of the following and write as a rational number of the form:(i) \( \frac{3}{4}+\frac{5}{6}+\frac{-7}{8} \)(ii) \( \frac{2}{3}+\frac{-5}{6}+\frac{-7}{9} \)(iii) \( \frac{-11}{2}+\frac{7}{6}+\frac{-5}{8} \)(iv) \( \frac{-4}{5}+\frac{-7}{10}+\frac{-8}{15} \)(v) \( \frac{-9}{10}+\frac{22}{15}+\frac{13}{-20} \)(vi) \( \frac{5}{3}+\frac{3}{-2}+\frac{-7}{3}+3 \)
- Multiply the following fractions:(i) $\frac{2}{5}\times5\frac{1}{4}$(ii) $6\frac{2}{5}\times\frac{7}{9}$(iii) $\frac{3}{2}\times5\frac{1}{3}$(iv) $\frac{5}{6}\times2\frac{3}{7}$(v) $3\frac{2}{5}\times\frac{4}{7}$(vi) $2\frac{3}{5}\times3$(vii) $3\frac{4}{7}\times\frac{3}{5}$
- Solve:(a) \( \frac{1}{18}+\frac{1}{18} \)(b) \( \frac{8}{15}+\frac{3}{15} \)(c) \( \frac{7}{7}-\frac{5}{7} \)(d) \( \frac{1}{22}+\frac{21}{22} \)(e) \( \frac{12}{15}-\frac{7}{15} \)(f) \( \frac{5}{8}+\frac{3}{8} \)(g) \( 1-\frac{2}{3}\left(1=\frac{3}{3}\right) \)(h) \( \frac{1}{4}+\frac{0}{4} \)(i) \( 3-\frac{12}{5} \)
- Express each of the following as a rational number of the form $\frac{p}{q}$(i) \( -\frac{8}{3}+\frac{-1}{4}+\frac{-11}{6}+\frac{3}{8}-3 \)(ii) \( \frac{6}{7}+1+\frac{-7}{9}+\frac{19}{21}+\frac{-12}{7} \)(iii) \( \frac{15}{2}+\frac{9}{8}+\frac{-11}{3}+6+\frac{-7}{6} \)(iv) \( \frac{-7}{4}+0+\frac{-9}{5}+\frac{19}{10}+\frac{11}{14} \)(v) \( \frac{-7}{4}+\frac{5}{3}+\frac{-1}{2}+\frac{-5}{6}+2 \)
