Fill in the boxes:
(a) $ \square-\frac{5}{8}=\frac{1}{4} $
(b) $ \square-\frac{1}{5}=\frac{1}{2} $
(c) $ \frac{1}{2}-\square=\frac{1}{6} $
To do:
We have to fill in the boxes.
Solution:
(a) Let the number in the box be $x$.
This implies,
$x-\frac{5}{8}=\frac{1}{4}$
$x=\frac{1}{4}+\frac{5}{8}$
$x=\frac{1\times2+5\times1}{8}$
$x=\frac{2+5}{8}$
$x=\frac{7}{8}$
The number in the box is $\frac{7}{8}$.
(b) Let the number in the box be $x$.
This implies,
$x-\frac{1}{5}=\frac{1}{2}$
$x=\frac{1}{2}+\frac{1}{5}$
$x=\frac{1\times5+1\times2}{10}$
$x=\frac{5+2}{10}$
$x=\frac{7}{10}$
The number in the box is $\frac{7}{10}$.
(c) Let the number in the box be $x$.
This implies,
$\frac{1}{2}-x=\frac{1}{6}$
$x=\frac{1}{2}-\frac{1}{6}$
$x=\frac{1\times3-1\times1}{6}$
$x=\frac{3-1}{6}$
$x=\frac{2}{6}$
$x=\frac{1}{3}$
The number in the box is $\frac{1}{3}$.
- Related Articles
- How quickly can you do this? Fill appropriate sign. ( '')(a) \( \frac{1}{2} \square \frac{1}{5} \)(b) \( \frac{2}{4} \square \frac{3}{6} \)(c) \( \frac{3}{5} \square \frac{2}{3} \)(d) \( \frac{3}{4} \square \frac{2}{8} \)(e) \( \frac{3}{5} \square \frac{6}{5} \)(f) \( \frac{7}{9} \square \frac{3}{9} \)(g) \( \frac{1}{4} \square \frac{2}{8} \)(h) \( \frac{6}{10} \square \frac{4}{5} \)(i) \( \frac{3}{4} \square \frac{7}{8} \)(j) \( \frac{6}{10} \square \frac{3}{5} \)(k) \( \frac{5}{7} \square \frac{15}{21} \)
- Compare the fractions and put an appropriate sign.(a) \( \frac{3}{6} \square \frac{5}{6} \)(b) \( \frac{1}{7} \square \frac{1}{4} \)(c) \( \frac{4}{5} \square \frac{5}{5} \)(d) \( \frac{3}{5} \square \frac{3}{7} \)
- Look at the figures and write 's' or ' \( > \) ', '- ' between the given pairs of fractions.(a) \( \frac{1}{6} \square \frac{1}{3} \)(b) \( \frac{3}{4} \square \frac{2}{6} \)(c) \( \frac{2}{3} \square \frac{2}{4} \)(d) \( \frac{6}{6} \square \frac{3}{3} \)(e) \( \frac{5}{6} \square \frac{5}{5} \)"
- $ 4 \frac{4}{5}+\left\{2 \frac{1}{5}-\frac{1}{2}\left(1 \frac{1}{4}-\frac{1}{4}-\frac{1}{5}\right)\right\} $
- Solve(a) \( \frac{2}{3}+\frac{1}{7} \)(b) \( \frac{3}{10}+\frac{7}{15} \)(c) \( \frac{4}{9}+\frac{2}{7} \)(d) \( \frac{5}{7}+\frac{1}{3} \)(e) \( \frac{2}{5}+\frac{1}{6} \)(f) \( \frac{4}{5}+\frac{2}{3} \)(g) \( \frac{3}{4}-\frac{1}{3} \)(h) \( \frac{5}{6}-\frac{1}{3} \)(i) \( \frac{2}{3}+\frac{3}{4}+\frac{1}{2} \)(j) \( \frac{1}{2}+\frac{1}{3}+\frac{1}{6} \)(k) \( 1 \frac{1}{3}+3 \frac{2}{3} \)(l) \( 4 \frac{2}{3}+3 \frac{1}{4} \)(m) \( \frac{16}{5}-\frac{7}{5} \)(n) \( \frac{4}{3}-\frac{1}{2} \)
- Simplify: $-\frac{1}{2}a^{2}b^{2}c+\frac{1}{3}ab^{2}c-\frac{1}{4}abc^{2}-\frac{1}{5}cb^{2}a^{2}+\frac{1}{6}cb^{2}a-\frac{1}{7}c^{2}ab+\frac{1}{8}ca^{2}b$.
- Simpify the following :$(\frac{16}{17} of 6 \frac{4}{5}) -4 \frac{1}{5}-[1 \frac{1}{14} \div(\frac{1}{2}+\frac{1}{7})] $
- Draw number lines and locate the points on them:(a) \( \frac{1}{2}, \frac{1}{4}, \frac{3}{4}, \frac{4}{4} \)(b) \( \frac{1}{8}, \frac{2}{8}, \frac{3}{8}, \frac{7}{8} \)(c) \( \frac{2}{5}, \frac{3}{5}, \frac{8}{5}, \frac{4}{5} \)
- A rational number between $-\frac{2}{3}$ and $\frac{1}{2}$ isA) $-\frac{1}{6}$B) $-\frac{1}{12}$C) $-\frac{5}{6}$D) $\frac{5}{6}$
- i)a) $\frac{1}{4} of \frac{1}{4}$b) $\frac{1}{4} of \frac{3}{5} $c) $\frac{1}{4} of \frac{4}{3} $ii) a) $\frac{1}{ 7} of \frac{2}{ 9}$b) $\frac{1}{ 7} of \frac{6}{5}$c) $\frac{1}{ 7} of \frac{3}{10}$
- Solve $7\frac{1}{3}\div \frac{2}{3}$ of $2\frac{1}{5}+1\frac{3}{8}\div 2\frac{3}{4}-1 \frac{1}{2}$.
- Simplify:\( 5 \frac{1}{4} \p 2 \frac{1}{3}-4 \frac{2}{3} \p 5 \frac{1}{3} \times 3 \frac{1}{2} \)
- Find:(i) $\frac{2}{5}\div\frac{1}{2}$(ii) $\frac{4}{9}\div\frac{2}{3}$(iii) $\frac{3}{7}\div\frac{8}{7}$(iv) $2\frac{1}{3}\div\frac{3}{5}$(v) $3\frac{1}{2}\div\frac{8}{3}$(vi) $\frac{2}{5}\div1\frac{1}{2}$(vii) $3\frac{1}{5}\div1\frac{2}{3}$(viii) $2\frac{1}{5}\div1\frac{1}{5}$
- Verify:$\frac{-2}{5} + [\frac{3}{5} + \frac{1}{2}] = [\frac{-2}{5} + \frac{3}{5}] + \frac{1}{2}$
- Name the property used in the following:$[\frac{2}{3}+(\frac{-4}{5})]+\frac{1}{6}=\frac{2}{3}+[(\frac{-4}{5})+\frac{1}{6}]$
Kickstart Your Career
Get certified by completing the course
Get Started