- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Compare the fractions and put an appropriate sign.
(a) $ \frac{3}{6} \square \frac{5}{6} $
(b) $ \frac{1}{7} \square \frac{1}{4} $
(c) $ \frac{4}{5} \square \frac{5}{5} $
(d) $ \frac{3}{5} \square \frac{3}{7} $
To do:
We have to compare the given fractions and put appropriate signs.
Solution:
To compare we need to convert the given fractions into fractions with equal denominators.
(a) Here,
$\frac{3}{6}$ and $\frac{5}{6}$ have equal denominators.
$3<5$
Therefore,
$\frac{3}{6} < \frac{5}{6}$
(b)
LCM of denominators 7 and 4 is 28.
Multiply $\frac{1}{7}$ by $\frac{4}{4}$
This implies,
$\frac{1}{7}\times\frac{4}{4}=\frac{4}{28}$
Multiply $\frac{1}{4}$ by $\frac{7}{7}$
$\frac{1}{4}\times\frac{7}{7}=\frac{7}{28}$
$4<7$
Therefore,
$\frac{4}{28} < \frac{7}{28}$
This implies,
$\frac{1}{7} < \frac{1}{4}$(c) Here,
$\frac{4}{5}$ and $\frac{5}{5}$ have equal denominators.
$4<5$
Therefore,
$\frac{4}{5} < \frac{5}{5}$
(d) LCM of denominators 5 and 7 is 35.
Multiply $\frac{3}{5}$ by $\frac{7}{7}$
This implies,
$\frac{3}{5}\times\frac{7}{7}=\frac{21}{35}$
Multiply $\frac{3}{7}$ by $\frac{5}{5}$
$\frac{3}{7}\times\frac{5}{5}=\frac{15}{35}$
$15<21$
Therefore,
$\frac{15}{35} < \frac{21}{35}$
This implies,
$\frac{3}{7} < \frac{3}{5}$
- Related Articles
- How quickly can you do this? Fill appropriate sign. ( '')(a) \( \frac{1}{2} \square \frac{1}{5} \)(b) \( \frac{2}{4} \square \frac{3}{6} \)(c) \( \frac{3}{5} \square \frac{2}{3} \)(d) \( \frac{3}{4} \square \frac{2}{8} \)(e) \( \frac{3}{5} \square \frac{6}{5} \)(f) \( \frac{7}{9} \square \frac{3}{9} \)(g) \( \frac{1}{4} \square \frac{2}{8} \)(h) \( \frac{6}{10} \square \frac{4}{5} \)(i) \( \frac{3}{4} \square \frac{7}{8} \)(j) \( \frac{6}{10} \square \frac{3}{5} \)(k) \( \frac{5}{7} \square \frac{15}{21} \)
- Look at the figures and write 's' or ' \( > \) ', '- ' between the given pairs of fractions.(a) \( \frac{1}{6} \square \frac{1}{3} \)(b) \( \frac{3}{4} \square \frac{2}{6} \)(c) \( \frac{2}{3} \square \frac{2}{4} \)(d) \( \frac{6}{6} \square \frac{3}{3} \)(e) \( \frac{5}{6} \square \frac{5}{5} \)"
- Fill in the missing fractions.(a) \( \frac{7}{10}-\square=\frac{3}{10} \)(b) \( \square-\frac{3}{21}=\frac{5}{21} \)(c) \( \square-\frac{3}{6}=\frac{3}{6} \)(d) \( \square+\frac{5}{27}=\frac{12}{27} \)
- Fill in the boxes: (a) \( \square-\frac{5}{8}=\frac{1}{4} \)(b) \( \square-\frac{1}{5}=\frac{1}{2} \)(c) \( \frac{1}{2}-\square=\frac{1}{6} \)
- Solve(a) \( \frac{2}{3}+\frac{1}{7} \)(b) \( \frac{3}{10}+\frac{7}{15} \)(c) \( \frac{4}{9}+\frac{2}{7} \)(d) \( \frac{5}{7}+\frac{1}{3} \)(e) \( \frac{2}{5}+\frac{1}{6} \)(f) \( \frac{4}{5}+\frac{2}{3} \)(g) \( \frac{3}{4}-\frac{1}{3} \)(h) \( \frac{5}{6}-\frac{1}{3} \)(i) \( \frac{2}{3}+\frac{3}{4}+\frac{1}{2} \)(j) \( \frac{1}{2}+\frac{1}{3}+\frac{1}{6} \)(k) \( 1 \frac{1}{3}+3 \frac{2}{3} \)(l) \( 4 \frac{2}{3}+3 \frac{1}{4} \)(m) \( \frac{16}{5}-\frac{7}{5} \)(n) \( \frac{4}{3}-\frac{1}{2} \)
- Prove that:\( \frac{2^{\frac{1}{2}} \times 3^{\frac{1}{3}} \times 4^{\frac{1}{4}}}{10^{\frac{-1}{5}} \times 5^{\frac{3}{5}}} \p \frac{3^{\frac{4}{3}} \times 5^{\frac{-7}{5}}}{4^{\frac{-3}{5}} \times 6}=10 \)
- Multiply the following fractions:(i) $\frac{2}{5}\times5\frac{1}{4}$(ii) $6\frac{2}{5}\times\frac{7}{9}$(iii) $\frac{3}{2}\times5\frac{1}{3}$(iv) $\frac{5}{6}\times2\frac{3}{7}$(v) $3\frac{2}{5}\times\frac{4}{7}$(vi) $2\frac{3}{5}\times3$(vii) $3\frac{4}{7}\times\frac{3}{5}$
- Simplify:(i) \( \frac{-3}{2}+\frac{5}{4}-\frac{7}{4} \)(ii) \( \frac{5}{3}-\frac{7}{6}+\frac{-2}{3} \)(iii) \( \frac{5}{4}-\frac{7}{6}-\frac{-2}{3} \)(iv) \( \frac{-2}{5}-\frac{-3}{10}-\frac{-4}{7} \)(v) \( \frac{5}{6}+\frac{-2}{5}-\frac{-2}{15} \)(vi) \( \frac{3}{8}-\frac{-2}{9}+\frac{-5}{36} \)
- Take away:(i) \( \frac{6}{5} x^{2}-\frac{4}{5} x^{3}+\frac{5}{6}+\frac{3}{2} x \) from \( \frac{x^{3}}{3}-\frac{5}{2} x^{2}+ \) \( \frac{3}{5} x+\frac{1}{4} \)(ii) \( \frac{5 a^{2}}{2}+\frac{3 a^{3}}{2}+\frac{a}{3}-\frac{6}{5} \) from \( \frac{1}{3} a^{3}-\frac{3}{4} a^{2}- \) \( \frac{5}{2} \)(iii) \( \frac{7}{4} x^{3}+\frac{3}{5} x^{2}+\frac{1}{2} x+\frac{9}{2} \) from \( \frac{7}{2}-\frac{x}{3}- \) \( \frac{x^{2}}{5} \)(iv) \( \frac{y^{3}}{3}+\frac{7}{3} y^{2}+\frac{1}{2} y+\frac{1}{2} \) from \( \frac{1}{3}-\frac{5}{3} y^{2} \)(v) \( \frac{2}{3} a c-\frac{5}{7} a b+\frac{2}{3} b c \) from \( \frac{3}{2} a b-\frac{7}{4} a c- \) \( \frac{5}{6} b c \)
- Express the following as improper fractions:(a) \( 7 \frac{3}{4} \)(b) \( 5 \frac{6}{7} \)(c) \( 2 \frac{5}{6} \)(d) \( 10 \frac{3}{5} \)(e) \( 9 \frac{3}{7} \)(f) \( 8 \frac{4}{9} \)
- i)a) $\frac{1}{4} of \frac{1}{4}$b) $\frac{1}{4} of \frac{3}{5} $c) $\frac{1}{4} of \frac{4}{3} $ii) a) $\frac{1}{ 7} of \frac{2}{ 9}$b) $\frac{1}{ 7} of \frac{6}{5}$c) $\frac{1}{ 7} of \frac{3}{10}$
- Find:(i) $\frac{1}{4}$ of (a) $\frac{1}{4}$(b) $\frac{3}{5}$ (c) $\frac{4}{3}$(ii) $\frac{1}{7}$ of (a) $\frac{2}{9}$ (b) $\frac{6}{5}$ (c) $\frac{3}{10}$
- Replace \( \square \) in each of the following by the correct number:(a) \( \frac{2}{7}=\frac{8}{\square} \)(b) \( \frac{5}{8}=\frac{10}{\square} \)(c) \( \frac{3}{5}=\frac{\square}{20} \)(d) \( \frac{45}{60}=\frac{15}{\square} \)(e) \( \frac{18}{24}=\frac{\square}{4} \)
- Using appropriate properties find.(i) \( -\frac{2}{3} \times \frac{3}{5}+\frac{5}{2}-\frac{3}{5} \times \frac{1}{6} \)(ii) \( \frac{2}{5} \times\left(-\frac{3}{7}\right)-\frac{1}{6} \times \frac{3}{2}+\frac{1}{14} \times \frac{2}{5} \).
- Take away:\( \frac{6}{5} x^{2}-\frac{4}{5} x^{3}+\frac{5}{6}+\frac{3}{2} x \) from \( \frac{x^{3}}{3}-\frac{5}{2} x^{2}+\frac{3}{5} x+\frac{1}{4} \)
