Python Forensics - Multiprocessing Support

Forensic specialists normally find it difficult to apply digital solutions to analyze the mountains of digital evidence in common crimes. Most digital investigation tools are single threaded and they can execute only one command at a time.

In this chapter, we will focus on the multiprocessing capabilities of Python, which can relate to the common forensic challenges.


Multiprocessing is defined as the computer system's ability to support more than one process. The operating systems that support multiprocessing enable several programs to run concurrently.

There are various types of multiprocessing such as symmetric and asymmetric processing. The following diagram refers to a symmetric multiprocessing system which is usually followed in forensic investigation.



The following code shows how different processes are listed internally in Python programming.

import random
import multiprocessing

def list_append(count, id, out_list): 
   #appends the count of number of processes which takes place at a time
   for i in range(count):
   if __name__ == "__main__": 
      size = 999  
      procs = 2
      # Create a list of jobs and then iterate through 
      # the number of processes appending each process to 
      # the job list  
      jobs = []
   for i in range(0, procs): 
      out_list = list() #list of processes 
      process1 = multiprocessing.Process(
         target = list_append, args = (size, i, out_list))

      # appends the list of processes

   # Calculate the random number of processes
   for j in jobs:
      j.start()  #initiate the process

   # After the processes have finished execution
   for j in jobs:
      print "List processing complete."

Here, the function list_append() helps in listing the set of processes in the system.


Our code will produce the following output −

Multiprocessing Support Output
Kickstart Your Career

Get certified by completing the course

Get Started