- Trending Categories
Data Structure
Networking
RDBMS
Operating System
Java
MS Excel
iOS
HTML
CSS
Android
Python
C Programming
C++
C#
MongoDB
MySQL
Javascript
PHP
Physics
Chemistry
Biology
Mathematics
English
Economics
Psychology
Social Studies
Fashion Studies
Legal Studies
- Selected Reading
- UPSC IAS Exams Notes
- Developer's Best Practices
- Questions and Answers
- Effective Resume Writing
- HR Interview Questions
- Computer Glossary
- Who is Who
Which of the following is a factor of $f( x)=x^{2}-9 x+20?$
$A).\ ( x-2)$
$B).\ ( x-3)$
$C).\ ( x-4)$
$D).\ ( x-5)$
Given: Polynomial: $f( x)=x^{2}-9 x+20$
To do: To find the factor of the given polynomial.
Solution:
Given polynomial: $f( x)=x^{2}-9 x+20$
Let $x-2=0\Rightarrow x=2$, Put this value in $f( x)$.
$f( 2)=2^2-9( 2)+20$
$=4-18+20$
$=6$
So, $( x-2)$ is not a factor of $f( x)=x^{2}-9 x+20$.
Let $( x-3)=0\Rightarrow x=3$, Put this value in $f( x)$.
$f( 3)=3^2-9( 3)+20$
$=9-27+20$
$=29-27$
$=2$
So $( x-3)$ is also not a factor of $f( x)=x^{2}-9 x+20$.
Let $( x-4)=0\Rightarrow x=4$, Put this value in $f( 4)$.
$f( 4)=4^2-9( 4)+20$
$=16-36+20$
$36-36$
$=0$
Therefore, $( x-4)$ is a factor of $f( x)=x^{2}-9 x+20$.
Thus, option $( C)$ is correct.
- Related Articles
- Use the Factor Theorem to determine whether \( g(x) \) is a factor of \( p(x) \) in each of the following cases:(i) \( p(x)=2 x^{3}+x^{2}-2 x-1, g(x)=x+1 \)(ii) \( p(x)=x^{3}+3 x^{2}+3 x+1, g(x)=x+2 \)(iii) \( p(x)=x^{3}-4 x^{2}+x+6, g(x)=x-3 \)
- Find the zero of the polynomial in each of the following cases:(i) \( p(x)=x+5 \)(ii) \( p(x)=x-5 \)(iii) \( p(x)=2 x+5 \)(iv) \( p(x)=3 x-2 \)(v) \( p(x)=3 x \)(vi) \( p(x)=a x, a ≠ 0 \)(vii) \( p(x)=c x+d, c ≠ 0, c, d \) are real numbers.
- Find the value of \( k \), if \( x-1 \) is a factor of \( p(x) \) in each of the following cases:(i) \( p(x)=x^{2}+x+k \)(ii) \( p(x)=2 x^{2}+k x+\sqrt{2} \)(iii) \( p(x)=k x^{2}-\sqrt{2} x+1 \)(iv) \( p(x)=k x^{2}-3 x+k \)
- For which values of \( a \) and \( b \), are the zeroes of \( q(x)=x^{3}+2 x^{2}+a \) also the zeroes of the polynomial \( p(x)=x^{5}-x^{4}-4 x^{3}+3 x^{2}+3 x+b \) ? Which zeroes of \( p(x) \) are not the zeroes of \( q(x) \) ?
- Verify whether the following are zeroes of the polynomial, indicated against them.(i) \( p(x)=3 x+1, x=-\frac{1}{3} \)(ii) \( p(x)=5 x-\pi, x=\frac{4}{5} \)(iii) \( p(x)=x^{2}-1, x=1,-1 \)(iv) \( p(x)=(x+1)(x-2), x=-1,2 \)(v) \( p(x)=x^{2}, x=0 \)(vi) \( p(x)=l x+m, x=-\frac{m}{l} \)(vii) \( p(x)=3 x^{2}-1, x=-\frac{1}{\sqrt{3}}, \frac{2}{\sqrt{3}} \)(viii) \( p(x)=2 x+1, x=\frac{1}{2} \)
- Divide the polynomial $p(x)$ by the polynomial $g(x)$ and find the quotient and remainder, in each of the following:(i) $p(x) = x^3 - 3x^2 + 5x -3, g(x) = x^2-2$(ii) $p(x) =x^4 - 3x^2 + 4x + 5, g(x) = x^2 + 1 -x$(iii) $p(x) = x^4 - 5x + 6, g(x) = 2 -x^2$
- Which of the following is not a polynomial?(a) $x^{2}+\sqrt{2} x+3$ (b) $x^{3}+3 x^{2}-3$ (c) $6 x+4$ d) $x^{2}-\sqrt{2 x}+6$
- Determine which of the following polynomials has \( (x+1) \) a factor:(i) \( x^{3}+x^{2}+x+1 \)(ii) \( x^{4}+x^{3}+x^{2}+x+1 \)(iii) \( x^{4}+3 x^{3}+3 x^{2}+x+1 \)(iv) \( x^{3}-x^{2}-(2+\sqrt{2}) x+\sqrt{2} \)
- Determine which of the following polynomials has \( (x+1) \) a factor:(i) \( x^{3}+x^{2}+x+1 \)(ii) \( x^{4}+x^{3}+x^{2}+x+1 \)
- Choose the correct answer from the given four options in the following questions:Which of the following is not a quadratic equation?(A) \( 2(x-1)^{2}=4 x^{2}-2 x+1 \)(B) \( 2 x-x^{2}=x^{2}+5 \)(C) \( (\sqrt{2} x+\sqrt{3})^{2}+x^{2}=3 x^{2}-5 x \)(D) \( \left(x^{2}+2 x\right)^{2}=x^{4}+3+4 x^{3} \)
- Identify polynomials in the following:\( p(x)=\frac{2}{3} x^{2}-\frac{7}{4} x+9 \)
- divide the polynomial $p( x)$ by the polynomial $g( x)$ and find the quotient and remainder in each of the following: $( p(x)=x^{3}-3 x^{2}+5 x-3$, $g(x)=x^{2}-2$.
- Find and correct the errors in the following.(a) \( (2 x+5)^{2}=4 x^{2}+25 \)(b) \( \left(x-\frac{1}{2}\right)\left(x-\frac{1}{2}\right)=x^{2}-\frac{1}{4} \)(c) \( (5 a-b)^{2}=10 a^{2}-5 a b+b^{2} \)(d) \( (p-3)(p-7)=p^{2}+21 \)
- $( x-2)$ is a common factor of $x^{3}-4 x^{2}+a x+b$ and $x^{3}-a x^{2}+b x+8$, then the values of $a$ and $b$ are respectively.
- Simplify the following :$( 3 x^2 + 5 x - 7 ) (x-1) - ( x^2 - 2 x + 3 ) (x + 4)$

Advertisements